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Preface

The purpose of this thesis is to continue investigation of the applying Porter's high-

gain error actuated proportional plus integral (PI) design techniques to the development of

control laws for an Advanced Tactical Fighter (ATF) type aircraft, the CRCA. Initial work

was accomplished by Capt. Daryl Hammond and the results of applying P! control based

upon output feedback were very promising. The results obtained of this effort display very

robust tracking and decoupling of outputs with the fixed-gain designs and a much more

realistic system bandwidth. More investigation of the adaptive algorithm will be necessary

to conclude this study of PI control for the set of inputs and outputs selected on the CRCA.

My personal thanks and gratitude are extenided to all who have helped make this

thesis effort possible, especially my thesis advisor Dr. John J. D'Azzo and predecessor

Capt. Daryl Hammond. Thank you both for the unending support ar- guidance. The

exceptional support and resources made available by the Flight Dynamics Laboratory were

also greatly appreciated.

Finally, I would like to thank my family and friends for their kind support and

understanding through this long and difficult endeavor.

Jamie Lynn Foelker
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Abstract

.Multivariable control laws developed 1-y Dr. Brian Porter of the University of

'Kalford. England are used to successfully perform maneuvering tracking tasks with the

NASA/Grumman Control Reconfigurable Combat Aircraft (CRCA). Porter's method is

used to design discrete Proportional plus Integral (PI) control laws. Output and selected

-tate rate fee,'back are used. The results in three no failure flight conditions show robust

track;ng control of the CRCA for five selected maneuvers. Single failures are introduced

to test the ability of the fixed-g in designs to successfully control the aircraft and perform

the maneuvers. The time responses show that discrete PI control law can make the CRCA

successfully perform all five maneuvers for two of the three control surface failures investi-

gated in two of the thre point designs. The step response PI control law results in stable

control for only one of three failure situations. For high gains, the system transfer function

becomes asymptotically diagonal (the outputs are decoupled). Based on this property, the

frequency analysis is obtained for the discrete PI design using each output with respect to

its associated input. Phase margins in excess of 150, gain margins of greater than 6dB, and

bandwidths in the range of 5-10 rad/sec are the result. The adaptive controller display's

a larger than ex"ected roll angle output in two of the maneuvers as compared to the step

response PI results. An adaptive algorithm using a re:ursive least squares estimation is

run with failure introduction occurring at one of two times in the simulation. The adaptive

rsllts also display decoupling of the outputs in the steady state.

xi



DISCRETE PROPORTIONAL PLUS INTEGRAL (PI)

MULTIVARIABLE CONTROL LAWS FOR THE CONTROL

fRECONFIGURABLE COMBAT AIRCRAFT (CRCA)

I. LVTRODUCTION

i.! B.CA'GROU.VD

Modern aircraft designs present the control engineer with great challenges. The

dinands for increased maneuverability can be met only at the expense of aerodynanic

tability. As aircraft become highly maneuverable there are some mission ftisht comlitiotis

whh a human al-nne cannot control, and an on-board compu ter in iist be i !seld for basic

';T:,ilitv. These control systems are termed fly-by-wire since there are no Iiichauical

(onnections between the pilot and control surfaces; only electrical signals from the flight

control computer. In addition to the role of stabilizing the aircraft, the flight control systein

must also provide the plane with the ability to make the outputs follow input commands.

The control laws developed are the mathematical equations which compute the required

iiiputs to the aircraft or plant.

Modern techniques using multivariable control have a distinct advantage over their

crotiontional counterparts in that only one control system need be developed for the aircraft

to be abie to perform specific tracking tasks where more than one set of inputs and outputs

are commanded. Separate loop designs are necessary in order to make each output track

a specific input when single input single output (SISO) designs are used. This can make

the design of a multiple input multiple output (MIMO) system extremely involved ai

t di Ii .

\inother issue which must be addressed is that of whether the designed fixed-gain

flight control system is robust enough to provide adequate control when the aircraft suffers

a control surface loss or malfunction. This problem is one of substantial concern to the

military. The first most impoitant area of concern is that of returning the flight crews
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and aircraft to safety after combat damage has been sustained. Aomtiler coicern is that

of accomplishing the mission. The aircraft must remain stable and retain at least limited

mission capabilities.

1.2 PROBLEM STATEMUENT

Design techniques developed by Professor Brian Porter of the Lfsiversitv of S;ilfd,

England allow for the development of a single, fixed gain control algorithm which i-s

output feedback to make the plant of interest perform tracking tasks with little to o

coupling of the outputs.

The goal of this thesis is to use Porter's multivariable design techniques to assess

the effects of single failure conditions on control algorithms designed for a healthy aircraft

performing five specified maneuvers in three different points on its flight envlope. The

most desirable result of this thesis would be that one set of design parameters for the fixed-

gain designs would yield adequate stability Fnd control of the aircraft in all three flighit

conditions as well as provide satisfactory performance when a single failure condition i s

introduced. Responses obtained from single failure modes, however, prove that a fixed set

of design parameters is an optimistic goal. Thus, the introduction of adaptive control is

deemed necessary.

This thesis effort is a follow-on to the work accomplished by Capt. Daryl Hlamniond

in .1fULTITV4RL4BLE CONTROL LAW DESIGN FOR TIlE CONTROL RECONF[G-

URABLE COMBAT AIRCRAFT (CRCA), 1988 (4). Hammond's results were the first

obtained using Porter's control techniques on the CRCA and served as a baseline for

performance comparisons. The number of maneuvers performed will be increased from

Hammond's two to five and an additional failure condition will be simulated.

1.3 S UMMARY OF CURRENT I'NOIVLEDGE

Hammond used two of Porter's design methods to develop Proportional plus Iitegral

PI) and Proportional plus Integral plus Derivative (PID) control algorithms. llammond

used four different techniques to design P1 controllers:

1-2



1. continuous controller based on known plant parameters,

2. discrete controller based on known plant parameters,

3. discrte step response controller baed on unknown plant parameters, and

-1. adaptive version of step response controller to take plant variations into consideration.

Ilis research concluded with an investigation of the discrete BID coiitroliir in th with ,:i d

without the actuator dynamics.

Hammond found that the fixed, high gaiii P1 cuntrollpr ha.sed , k,,w,,ge ,f' t,,

aircraft parameters displayed robust performance in normal aircraft flight conditions and

that a fixed set of design parameters provided satisfactory performance in 70% of the

flight configurations tested. He also found that the discrete PI controller outperformed

its continuous counterpart. However, the discrete step response PI controller could not

adequately control the left flaperon failure, so adaptive control was applied. Iho adaptive

controller's performance was exceptional in the simulation tested. The BID ' oltr',,l!

performed very well in simulations where the CRCA's actuator dynamics were not inclhidd.

1.4 .4SSUMPTIOVS

The following assumptions made in Hammond's thesis will he used in this effort, and

their effects on the thesis scope will be noted.

1. The linearized equations of motion are used in a point design (initial velocity awd

aitii.ude are ussumed fi.ed at a '.min condition) and only small variations are allowed

about the trim point.

2. The outputs used are assumed to be measurable and readily accessible.

3. The aircraft is treated as a rigid body so that bending modes do not appear in the

linearized equations of motion.

,1. Fuel consumption is considered mini mal over the short simidmation dirations, so n;Iass

is treated as a constant.
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5. rhe earth's surface is used ai the inertial reference frame which can again be at-

tributed to short simulations and aircraft sensors that are not sensitive enough to

detect the earth's rotation (4:1-6).

6. The atmosphere is assumed fixed to the earth's surface and wind effects are not

considered.

1.5 .A PPROACf

This thesis effort focuses on the two methods of designing discrete non-adaptive

PI controllers and also investigates an adaptive approach where applicable. liammond's

previous work is used as a baseline and the new research has been built from his existing

computer programs. These computer programs are expanded to perform the additional

flight operations.

The CRCA is chosen as the research vehicle primarily because there is a great deal

of aerodynamic data available for single and multiple control surface losses and failures.

This data is an invaluable aid in assessing the robustness of the individual PI designs.

Hammond's design parameters are used initially and then necessary changes made

to them to satisfactorily control all outputs. An additional goal of trying to obtain "rea-

sonable" controller gains is added. Frequency analysis will be performed to ensure that

the phase and gain margins specified by MIL-F-9490C are met and a realistic bandwidth

is obtained.

The research will be performed on the powerful software package MATRIX.,. All

necessary modifications have been made to the computer programs in order to run the

sihulations on Version 7.0. The System Build feature of MATRIXx (6) allows for straight-

forward multivariable design and analysis.

1.6 OVERVIEW

The remainder of this thesis is organized according to the following schedule. The

aircraft models, actuators, and ARMA representation are discussed in Chapter 2. The

theory behind the different control law design methods are presented in Chapter 3. The

1-4



The results obtained from the discrete PI controller can be found in Cli;,ptr .1. ad the

st ep response and adaptive results are contained in Chapter .5. (haipter (' coritai Is a

summary of the results obtained and includes recommendations for future work using

Porter's methods on the CRCA flight control system.
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I. DESCRIPTIO.V OF .MODELS

2.1 AIRCRAFT DESCRIPTION

The Control Reconfigurable Combat Aircraft (CRCA) is a NASA/Grumman Ad-

vanced Tactical Fighter (ATF) type design. The CRCA was designed for high performance

with relaxed static instability of 12% at low airspeeds (12:3-1). The plane is not slated

for production. but it is being used to assess combat damage survivability. Ilhe CItCA.\

shown in Figure 2.1, has nine separate control surfaces consisting of two canards, a riidd,,r.

an(d two flaperons and an elevator on the trailing edge of each wing. The three slirl'zIces

on the trailing edge of each wing are commanded together in this thesis effort in ,rdor

to preserve the laminar airflow over the wings. The canards have 30' of positive dihedral

(upward cant from the horizontal) and are "all-flying", meaning that the longitudinal and

lateral-directional equations of motion for the aircraft are coupled.

2.2 FLIGHT PHASES

The aerodynamic data on the CRCA is available for four design points and tle io1'r

dc3L-sgn points, or flight conditions are representative of the aircraft's performance range.

Descriptions of the four flight phases was obtained from Appendix C of Reference (12) and

Flammond's Chapter 2.

The first flight condition is Air Combat Maneuvering (ACM) Entry. This

flight phase is representative of aircraft conditions normally encountered at the initiation

of an air-to-air engagement or weapons delivery. Altitude can vary from 10,000 to 30.000

feet with velocities just under Mach 1.

The next flight phase is Terrain-Following/Terrain-Avoidance (TFTA). This is

a low altitude, high velocity flight condition commonly used to avoid enemy radar detection.

Velocities are as high as those used in ACM Entry, but with altitudes as low as 200 feet

above local ground level. The dynamic pressure, q, is very high for this condition and

rapid changes in pitch angle can be expected.

The third point design is ACM Exit. This condition is very diffictit to control ine

the aircraft has low airspeed with a high angle of attack (- 300), steep bank angle(- TiP

2-1



CANARDS WITH3 (r IHEDRAL

LEADING EDGE

Figure 2.1. Combat Reconfigurable Combat Aircraft (CRCA) (4)
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and a high load factor (_ 3g). The aircraft has been pushed very close to its limits by the

end of the air-to-air encounter.

The fourth flight phase is Short Take-Off and Landing (STOL). This condition

has the lowest airspeed of all four and is the most critical flight phase. The landing

requirements are a maximum landing distance of 1.500 feet and a crosswind of 30 kiots.

This data was unfortunately not available in time to be incorporated in this thesis efFort.

Table 2.1 (4:2-3) summarizes the characteristics of the CRCA's ftight phases. The

point designs accomplished in this thesis are valid since the maneuvers performed do not

stray significantly from the design points.

Table 2.1. Flight Conditions

MISSION SEGMENT I ALTITUDE, FT I MACH NO. LOAD FACT O-t

ACM ENTRY 30,000 0.9 Iffg
TF/TA SEA LEVEL 0.9 Ig
ACM EXIT 10,000 0.275 3g
STOL 1200 0.185 L g

2.3 DETERMINA TION OF AIRCRAFT MODELS

2.3.1 STATE SPACE MODELS Linearized state space models of the CRCA have

been obtained utilizing computer programs at the Flight Dynamics Laboratory at Wright

Patterson Air Force Base (4, 7). All aircraft models used in this thesis are those obtained

from Hammond, with the exception of the 25% rudder failure case models which are

extracted from Capt. Kurt Neumann's thesis computer files (7).

The result of using the CRCA's nonlinear equations of motion and control and sta-

bility derivatives is a linearized model containing nine states and niiv. inputs, as shown in

Table 2.2 (4:2-9) for the ACM Entry flight condition.
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Table 2.2. Aircraft State Space Matrices for ACM Entry

-. 0119 -. 0186 -31.2350 -32.1804 .0000 .0000 .0000 .0000 .0000
-. 0324 -1.0634 894.4548 -1.0634 .0000 .0000 .0000 .0000 .000)
-,0002 0069 -. 6015 0000 .0000 .0000 )000 o000 .000)0

.0000 .0000 1.0000 .0000 .0000 .000 )000 0o00 )0U0
A .0000 .0000 .0000 .0000 .0000 .0000 0000 1.0000 .o0?0

,0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000 .A3.19
.0000 .0000 .0000 .0000 .0000 .0360 -. 0929 .0349 -. 999-
.0000 .0000 .0000 .0000 .0000 .0000 -27.8066 -2.0376 .A913
.0000 .0000 .0000 .0000 .0000 .0000 2.4582 -. 0241 -. 4377

.0411 .0411 .1322 .0866 .1322 .0866 .1018 .1018 .0000 1
-.3163 -.3163 -.9597 -.6194 -.9597 -.6194 -1.0183 -1 0123 U000
.1014 .1014 -.0284 -.0215 -.0284 -.021.5 -.02o0 -.0200 .0000
.0003 -.0003 -.0002 -.0001 .36u2 .0001 -.0001 .0001 .0006

B = .0000 .0000 .GuO .0000 .0000 .0000 .0000 .000 .000
.uU6U .0000 .0000 .0000 0000 .0000 .0000 .otm1110 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0100 . 0 1 )
0762 -. 0762 .2219 .2011 -. 2219 -.2011 .1109 -.1109 .11..1
.0486 -. 0486 .0029 .0021 -. 0029 -. 0021 .0021 -. 0021 -. 05.1j

z = u w q 0 ib + /3 p r (2.1)

= 6 d bcr biell 6te2l btelr 6 te2r 6dtelsl 6 1telsr 6rud (2.2)
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The eight states As mentioned previously, the three trailing edge control surfaces on

each wing are commanded together. This effectively reduces the number of control surfaces

from nine to the following five;

6,1 = left canard

bcr = right canard

6tej = left trailing edge flaperon

Ster = right trailing edge flaperon

,d = rudder

The columns of the corresponding left and right trailiug edge surfaces of the B matrix

are summed to form a reduced input B matrix. Now that there are only five inputs. oily

five outputs can be controlled using output feedback. The five chosen outputs are

v = forward velocity

3 = sideslip angle

9 = pitch angle

0 = bank angle

r = yaw rate

The 9x9 A matrix does not have full rank since the state 4 is redundant. Therefore,

the fifth row and column are removed and A is reduced to an eight state model. Also,

Hammond found that the remaining eight states had to be reordered so that Autoregressive

Moving Average (ARMA) models could be generated more directly. Table 2.5 (4:2-10)

contains the resulting ACM Entry model of the CRCA used in this and Hammond's thesis.

The order of inputs and states remains the same for the rest of the flight conditions used
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where the eight remaining states are

u = velocity in aircraft X axis

iv = velocity in aircraft Z axis

q = pitch rate

0 = pitch angle

VY = yaw angle

0 = roll angle

.3 = sideslip angle

p = roll rate

r = yaw rate

The aircraft open loop eigenvalues for the three point designs used are listed in

Table 2.3 and the transmission zeros in Table 2.4.

Table 2.3. Open Loop Eigenvalues of 8x8 CRCA Models

ACMENTRY 3 ACMEXIT TFTA

-0.0078±j0.0495 0.02 20±jO.0363 0.0236
-0.0562 -0.2139 -0.0457
1.6669 -0.3059 -0.0583

-0.2482±j1.8323 0.4718 -0.7559±)2.9853
-2.0156 -1.7162 -2.44 18±j4.4400
-3.3281 -0.6572±jl.7084 -5.4284

Table 2.4. Open Loop Transmission Zeros of 8x8 CRCA Models

ACMENTRY ACMEXIT TFTA

-1.6844 -0.0902 -2.8974
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Table 2.5. Equivalent Aircraft 8x8 Matrices For ACM Entry

.0000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 1 .0000 0350
-32.1804 .0000 -. 0119 -. 0186 -31.2350 .0000 0t)00 .000o

-1-0634 0000 - 0324 -1.0634 894.4548 .0000 oto t0()(011
.0000 .0000 0000 .0069 -. 6015 0000 .;0-)0 00("0
.0000 0360 0000 0000 .0000 -,0929 1)319 - 191 11
.0000 0000 000 .0000 .0000 -'27., 036 -2 t)376 1)13
.0000 .0000 0000 .0000 .0000 2..1582 - W211 -. 1377 j

.0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000

.0411 .0411 .3206 .3206 .0000
B -. 3163 -. 3163 -2.5974 -2.5974 .0000

.1014 .1014 -. 0699 -. 0699 .0000

.0003 -. 0003 -. 0004 .0004 .0006

.0762 -. 0762 .5339 -. 5339 . 1li

.0486 -. 0486 .0071 -. 0071 -. 05--1

x= o u w q 3 p r 12.3

U 6 ,1 3
r btel bter 6rtud ] 2.1)

The output matrix is

0 0 1 .0349 0 0 0 0

0 0 0 0 0 1 0 0
C- 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
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Simulations will be performed in the three flight phases ACMENTRY, ACMEXIT.

and TFTA and the following single failure cases are investigated in the ACM Entry aild

TFTA flight modes:

1. 30%, loss of left trailing edge (combination of three surfaces)

2. .0c loss of left canard

3. 2.5c/ loss of rudder

No failures are investigated in ACM Exit since the flight condition is very difficult to

,otrol with the healthy plant. Appendix A contains the reduced order(Sxl) state-space

mii odols for all flight conditions and for the single failures used in this thesis.

2.3.2 ATOREGRESSIVE MOVILG AVERAGE (ARMA) MODEL 11okor and

Keviczkyvs ( 1) technique is used to transform a plant model from state space form

x A ,x + 13u

y =('xr

1,) an ARM.\ repro'fentation where

,,,(kl)+,-Ily(k - 1)T + +Avy(k - N)T :j u(k - 1HT + + B.vu(k - .')T (2.5)

and the matrices A, through AN and 1, through B V are the ARMA coefficients. This

,quation is used by Porter and Fripp (9. 8) with no noise source considered. The reduced

order ARMA model is determined using the ratio of the number of states n to the number

of inputs m, N z n/m. For the eight state, five input model used in this thesis, two A,

and B, ARMA coefficients ark sufficient to form the output Equation 2.5

Equation 2.5 can also be expressed as

y(kT) = 0r(kT)(kT) = OT(kT)OT(kT) (2.6)
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where, for ease of simulation,

A1  -y(k - 1 )T

A-v -(k - N )T
k(T1) =i(T

B1  u(k- I)T

BN u(k - N IT

Each coefficient 4f 0(kT) is a column vector containing the 12 terms of that ARNIA Wooftfi-

ciout. Thus. the elements ila the rows of .41 are transposed and placed in one column that

cintains the 12 values. Then the elements of A 2 occupy the i_-xt 12 positions. Similarly.

te eloments of 1, and B2 each occupy 12 positions in O(,T).

Each term of o(kT) is an P x m block diagonal sub matrix. The past outputs

,j(k - i)T, with I < I < N, for each of the m inputs appear as diagonal blocks. The inputs

W k - 1)T, with 1 < i < N, appear in diagonal subblocks, each of size m x 1, with onily 1,

ippoaring in each subblock. See the example matrices on the next page.

ThO rduced order model for the CRCA uses

(kT)T =[T .I BT BT]T C RIx0 (2.7)

o+kT)T = [-YT(k - I)T - yT(k - 2)T uT(k - 1)T UT(k - 2 )T]T E R" 0° (2.8)

The program used to generate the ARMA coefficients for each flight condition ,dong w th

the coefficients for each flight condition is listed in Appendix B. The ARMA representation

of the system is used to run the adaptive algorithm of references (8, 13).
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For oxamn :,, with n = 2 with 2 inputs and outputs:

*4- .1,) [ -yl (k - 1) 0

-y 2 (k - 1) 0

.1 (2. 1) 0 -yl(k- 1)

. 2) 0 -Y 2 (k- 1)

42(1, 1) -y 1 tk - 2) 0

.- ( 1,.2) -y 2 (k - 2) 0

A,2 (2, i) 0 _2l( .  - 2)

.121(2,2) 0 -y. 2( k - 2)
a Q =

1. j )ul(k - 1) 0

B3, . ) t,:( k - 1 ) 0

B1 2. 1) 0 uL(k - 1)

131. 2) 0 a2(k - P

t( 1. 1) tl(k - 2) 0

134( 1.2) It2(k - 2) 0

13,(2, 1) 0 uL(k - 2)

1312.2) 0 u2(k -2)

2.; I C(T7" II'OR MfODELS The CRCA has no mechanical connections between

t ho pI,,t and the control surfaces and is thus termed a fly-by-wire control system. In order

;, t alidi the designs accomplished, actuator dynamics must be taken into con.si d-

i,. h1 addition to actuator dynamics, the physical limitations of maximum (Meflectins

lI, lfl.c:i)on rates (5 ;I ;ilso be incorporated into the actuator modol. Tabi,> 2.(; list s t h

Ihimtatiom for thh three liffrent, control surfaces.

,:11 r~r td ,,wrked pHrmia'il; witl tho first order actuator model

20
. + 20)
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Table 2.6. Control Surface Position and Rate Limits

Surface Position Limit Rate Limit
(deg) (deg/sec)

Canards +60 -30 + 100
Trailing Edges +30 -30 100
Rudder +20 -20 100

A second order approximation of the actuator model is used exclusively throughout this

thesis effort.

5113
bcontrol(S ) (s + 53 - j48) 6 cmd (2.10)

A description of the CRCA is described by a set of linear differential equations

and an eight state model. The aircraft models are linearized about 3 flight conditions,

TF/TA. ACM Entry, and ACM Exit and include second orde r actuator dynamics. The

autoregressive moving average (ARMA) representation of aircraft is also presented. The

PI control law development is presented in Chapter 3.
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I1L DESIGN PROCEDURES

j. "OVERVIEW

The P1 controller design techniques developed by Porter are implemented using out-

put feedback. Using output feedback is often more advantageous than using state feedbck

if all of the states are not readilv available and estimates would have to he used :(: ;h0,.

U'sing Porter's method, tracking can be achieved with little to no coupling occurring be-

tween outputs. The use of high gain in the forward loop results in an asymptotic transfer

function for the closed loop system composed of fast and slow modes. "The slow modes are

asymptotically uncontrollable or unobservable, and thus the output response is dominated

by the fast modes." (3:661)

.Y.2 DISCRETE, FJXED-GAL PI CO.NTROLLER THEORY

The plant must satisfy four necessary criteria before any of Porter's design tcchniques

can be used:

1. The plant must be completely controllable.

2. The plant must be completely observable.

3. rank I=j =n+1

4. Transmission zeros can be computed from

sl -A B
=0

-C D

for the completely controllable and completely observable plant. No transiuu

zeros can be located at the origin, or the plant is functionally mircontrollable. The

number of transmission zeros for the plant where I = m is n - m - d, where d is the

rank deficiency of GB (3:668).
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The continuous aircraft, or plant, may be represented by equations of the form

.i(t) .1  .422 x (t) ] u(t) (3.1)

- 2 (t) .421 A2 2  2 (t)2

= [ I 2] :

y(t) C, C2 xI(t)

where the dimensions are

XI: (n- m) x 1

X2 rnxl

Al I I n m) x (n - m)

A22: m x l

B2 :n x -;i and has rank M

C2: mx mand hasrank m

Notice that the B matrix in Table 2.5 and the B matrices for the rest of the CRCA's

flight conditions are not of the required form in Equation 3.1. A transformation could be

performed to express the CRCA state space matrices in the form of Equation 3.1. However,

this step has been proven to be unnecessary (3:668-669), and the design can be performed

for any form of the state equations.

The rank of the matrix product CB (the first Markov parameter) must be checked.

For a plant that has rank(CL)=m, the plant is termed "fegular" and only requires output

feedback. For a plant like the CRCA where rank(CB)< m, the plant has a rank deficient

first Markov parameter and rate feedback of the state vector ij must augment the output

feedback. Figure 3.1 illustrates the control law used for irregular plants.

The feedback signal with rate feedback incorporated is now

w y + Mx1
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Figure 3.1. Discrete P1 Controller -Irregular Plant

(, )

From Equations 3.1 and 3.2 it can be shown that

w CI C2] []+AiAl A123 K:
= F. F 2 1[ (33)

From Figure 3.1 it can be seen that

e r r-w

where r = commanded input signal.

Expressing the state equation in the discrete time dfomain Yields the differelice p-

ton

.r(k + I1)T = (D(T)x(kT) + 'TJ(T)u(kT) ~i
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where

,D(T) = PAT - [i 1 (T) 012(T) 1(3.5)
and

= e~d [B2 ] 02(T)](.)
anQA the Uifrerenc,: niuaLiuit cep~ezenibi8iLte iinegrdl of the error is

:(k + 1)T = z(kT) +Te(kT)

= Z(kT) +T[r(kT) - w(kT)]

- Z(kT) +Tr(kT) -TFixl(kT) -TF 2 X2 (kT)(.)

The composite difference equation for the open loop of Figure 3.1 is

[ (k +1)T [ I -TI' 1  -TF 2  -z(kT) 0

x,(k+ )T0 0! 1 12 x kT)1+~ 1 j~ T
[X2 (k + )T [0 0IP2 022 x2(kT)j 111

+ r(kT) (3.8)

F (kT)1
y[0 C, C x 1(kT) (3.9)

[x2(kT)J

where the control law is

u(kT) = (Kie(kT) + 1C2z(kT)1,

I 4[Air('T) - K1 Fixj(kT) - I~IIF 2 X2(kT) + AKs(kT')]
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The closed loop equation for the system can now be written as

F; -k- i)T I1 -TF, -TF 2  kT)

xi(k + 1)T 1 K2 011 - 01 2I F1 Oa1 - 1 1I F2 xl(kT)

• (k + 1)T 102K2 21 - 02I F1 022- T2j (k)
ST TT

+ },E ,(k-T) ;:s. 10

No changes appear in Equation 3.9, the system output.

The form of Equation 3.10 that is in Porter's paper (2) is obtained by making the

substitutions
AT '127T2

D(T) = eAT + AT + ' 2 ! + (3.11)

lim e r T I + AT + 0(I{.O.T.)
T-0

l I[eAT - I] = A + O(H.O.T.)
T-OT

[ 11 012 1 FA1 T + 1, .412T 1 3.)

012 022 A 42 1T .422T + I

lim 1 (T) 1 0 = (T) =T)
T-oT T T B 2 B2B2  L' 02(T)
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Equation 3.10 can now be written as

:(k + )T F1 - IF, -TF2 z(kT)

, z(k + F)T 0 .411T + l -t, A12T x(kFT)

[2(k + I)T B 2 K 2 .421T - B2 KF .4 2 2 T+[1-B. F j J2(kT)

Ti1

0 r(kT) :3.13)

B 2 I 1

The output equation has not changed from Equation 3.9.

Singular perturbation methods, where f=} - oo are the perturbation variable, is

used to block diagonalize the closed loop system of Equation 3.13 and to determine the

fast and slow modes of the system (3, 2).

Equation 3.13 must first be represented by the form

[l(k+ It = 5 [1 .4.2 ±(kT) + [ j r(kT) A.(kT)+ !3r(kT) (:i.11)
22(k + 1)T -43 .-44 B2

y(kT)= ± ' C (UT) (3.15)

where

.vj(kT) : (kT)

and the matrix dimensions are

A1 : (n - rn) x (n - m)

.44: mrn

B02 : m x m and has rank m
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A transformation matrix, T, can be used to transform Equation 3.14 into block

diagonal form (3)

.r,(k + I)T 1 4, 0 x(kT) 1 B, r1= + I r(kT) (3.1G)

.zf(k + l)T 0 4f x (kT) B/

y~~kT) ~ = C,(kT:)17
y~kT) ." Cf xf (kT) 317

D'Azzo explains the steps to block diagonalize Equation 3.14 (3:063-667). Comparing

D'Azzo's results to those that Porter obtained for the discrete plant (2:1210),

A, = I+ TAo Ao [ AF' 1  h A 11 - .4 1 2'K2 1 ]

Af = f + .44  .44 = -B 2 A'KIF 20
B, = TBo Bo = K4 12F;-

B1  = B2 K1

C, = Co CO=[ C2 F-' 1A'-'IK2 C I- C, Fj1 ]

Cf = C2
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The overall transfer function for the closed loop system is

() = cs C ] [ Al-A 1 ]I

= C,(AI- .4,)-'B, + C1 (AI- A)-1 B

= r()+ (A) (3. ()

There are three sets of eigenvalues for the asymptotic transfer function, two SowC ;111d

one fast. The first set of slow eigenvalues is

Z,= { A - , + = o}

This set of poles is asymptotically uncontrollable because of the zero element in B,.

The second set of slow eigenvalues is both controllable and observable. This set

contains the transmission zeros of the plant augmented with the minor loop rate feedback

through the measurement matrix, M.

Z2 = I{JAI,1 - 1,1 - TAI + T.41,F71 F, I = 0}

The set of fast eigenvalues are also controllable and observable. Note that eigenvalues

obtained from A4 = B 2 KIF 2 and F2 B2 K 1 (which is used below) are identical.

Z3 = {IrA - 11 + F2 B2 /tI = 0}

All three sets of poles must lie in the open left half s plane or open unit circle in the

z plane. The output consists of the fast modes containing the poles 23 and a set of slow

modes containing the poles Z2.
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3.3 DESIGN PA.4RAMETERS FOR THE DISCRETE FIXED-GAIN PI CONTROLLER

In order to achieve a diagonal transfer function, [(A) for an irregular plant. lie

measurement matrix, N1 in Figure :3.1 must be chosen carefully. M should be formed with

as few non-zero elements as possible so that

F2 = C2 + MA 1 2  (3.19)

has full rank m and C2F l' is diagonal.

The following steps outline the procedure to determine the form of the measurei nt

matrix (3, 4):

1. Form the matrix
T d

C1 A" A12

B= (3.20)
cTA -d,'

where m is the number of control inputs, c is the ith row of C, and

di = min [ : ci A',A1 2  0,j = 0, 1, .. ,n - 1 (:3.21)

Equation 3.21 specifies that di is the smallest value ofj for which c .4 1 A12 j 0. The

permissible values ofj are 0, 1,..., n- 1. If all the values ofj result in cTAj 1.4,2 0,

then use di = n - 1, where n = dimension of All.

2. Form F2 = C2 + MA12 using a general form of the matrix If = [m23 ]. The elements

mij appearing in F2 are permitted nonzero values only if B has a non-zero element

in a corresponding position. All other elements of M are set equal to zero.

3. Form C2 F l' and set off-diagonal terms to zero if possible to ensure a diagonal matrix.

1. Ensure that F2 has rank m.

For the CRCA, Equation 3.20 is formed using the parameters from ACM Entry.
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0 0 1 .0349 0 0 0

0 0 0 0 0 1 0

= 1 0 0 C2  0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 00 0

.AII = 0 0 0 .412 0 0 0 1 0.035

-32.1804 0 -. 0119 -. 0186 -31.235 0 0 0

It can be verified that the form of %I does not change for the different flight condi-

tions by noting the same location of non-zero elements in All, .412, C1, and C2 terms of

Appendix A.

Equation 3.20 yields the values d, = d2 = d3 = d.1 = d5  0. Then B formed.

-. 0186 -31.235 0 0 0

0 0 0 0 0

B' 0 1 0 0 0 (3.22)

0 0 0 1 0.0349

0 0 0 0 0

The matrix C 2 in Equation 3.19 has a dimension 5 x 5. Since the dimension of .412 is 3 x

5. the necessary dimension of M is 5 x 3. Using M of the form

tin1  M 12  71713

M 21 in 2 2 M 23

Ml -- 3 1 n 3 2 M33 (3.23)

M 4 1 in 4 2 M 43

M 5 1 M 52 rn53
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the matrix F2 of Equation 3.19 is

.0349 - .0186m 13 in1 l - 31.235M 13 0 M 12  .035m 1 2
.01,S m03 Ill1 - 31.235"12 3  1 12., .1)22 22

-. 0186M3 3  7131 - 31.235m 33 0 77232 .() 35 2 4.2!)

-. 0186m 43  m41 - 31.235m 43 0 in 4 2  .035e.12

.018m 5 3  sl - 31.235m 53 0 in 52 1 + .03 5 2

The assignable elements of F2 are permitted non-zero values only if B" has a nonzero

olement in the same position. Thus. it is required that M 2 3 = in3 3 = m 13 = 
m,3 = .r 'I

11 = 7051 = M 12 =ln 2 = m:32 = m 2 = 0. This leaves an F, matrix of the forl

.0349 - .0186 13 11111 - 31.235m 13 0 0 0

0 0 1 0 0

F2  0 M31 0 0 0 (3.25)

0 0 0 M 42 .035m 4 2

0 0 0 0 1

The matrix C,'2 F - 1 must be diagonal. therefore the third lement in the first MV. ,f

Equation 3.26. ro11 = 31.235mI 3. It is also apparent from the first and third terms of the

first row that setting in 13 = 0 ensures that the matrix product is diagonal and insensitive

to variation of the measurement matrix values. With non-zero values of in 3 1 and r.1),

rank of F2 is m. Since the measurement matrix implemented in the computer simulations

has only two non-zero elements in 3 1 and m42 , a reduced 5 x 2 Al matrix is used since the

third column of M contains only zeros.

0319 03.9(n 1 1 -31"235mj)) 0 t
U349-'1?36m1 3  -(U349-0I86m 3 )m 31

0 1 0 0 0

- 0 0 0 0 0 (3.26)

0 0 0 0 0

0 0 0 0 1

3- i



Tte proportional path gain matrix, k1  in Figure 3.1 is selected to make the fast

transfer function, Ff(A) of Equation 3.18 diagonal. Therefore,

F2 B2 KI = E 3.27)

where E is a diagonal matrix of elements ai. So

Ki = ( F2 B2 )-E .2<

and

A*2 = -AoA'0  (3.29

AO is the ratio of integral to proportional control.

This form of M and the appropriate choice of A', only ensure that tte fast transfer

function, El(A) of Equation 3.18 is diagonal. All of the terms of f5 (A) ,:st also be diago(nal

to ensure an overall diagonal transfer function F(A).

The Plements of the E matrix are selected by a trial aid error process. \Vhen a

diagonal F(A) has been achieved, each element of the E matrix. o, fine tunes the ith

input's affect on the ith output.

3.4 DISCRETE STEP RESPONSE PI CONTROLLER THEORY A.VD DESIGN

Porter has developed a technique that can be used to design a control system for

a plant when the mathematical equations are ni3t known (10, 8). The method has been

developed for a regular and asymptotically stable plants (where all open loop eigenvalies

are in the open unit circle of the z plane) where the steady state transfer function. G( O.

has rank m (no transmission zeros at the origin) and F'. the plant decoupli,.g matrix, has

fNll rank m.
cT.4 '  B

c[A'1 ' Bc3 1 B
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o) is the number of control inputs. cf is the ith row of C and

di = m fin [j :TA.. O ,j =0.1.....n- 1] (331)

An effort has been made in llamniond's thesis to extend this l,,sir, to t he :: ,'

an irregular and unstable plant. The extension of the step response nethod is conll

in this thesis effort.

The discretized plant Equations 3.4, 3.7 are repeated and Equation :3.3 is used to

forin

x(k + 1)T = ,bx(kT) + Tu(kT)

s(k + 1)T = z(kT) + Te(kT)

= .(kT) + Tr(kT) - TIL'(kT)

= x(kT") + Tr(kT) - TFx(kT)

The control law is

u(kT) = T [Kle(kT) + 1C2 z(kT)] (3.32,

Note that Figure 3.1 is applicableif the gain factor is changed to T Ior this d,,lii1.

Te closed loop equation can now be expressed as

x(k + 1)T = (T- TDKjF)z(kT) + TIPK 2z(kT) + TKIIr(kT)

z(k + I)T = -TFx(kT) + z(kT) + Tr(kT)

The block diagonalization depicted in Equations 3.16 and 3.17 is performed and the

following two sets of eigenvalues result. The sloiw set is determined frum

Z, = ,[AI - I, + T.41 = 0}

and the fast set is

2= {A1, - 1t + T.4-1BI 2  0}
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The step response method is designed around two plant responses, H(T) and

G(O) = H(xc). The response with a step input at the first sampling time, T, is

H(T) = CA-(e 4 T - [,)B

Referencing Equation 3.11, 1(T) can be approximated as T - 0 by

tH(T) = CA-'ATB = TCB

G(s) = C(sI, -- )-'B

and as s - 0,

G(O) = -C'A - B (3.34

The proportional and integral path gain matricies are given as ( W, 9, S)

K 1 = H(T)-1E (3.35)

and

K2 = G(0)-'1l (:3.3

where E is a diagonal matrix as defined in Equation 3.27 and Ff1 is another diagonal matrix

of arbitrary values which are determined by trial and error through computer simulations.

Using the .4, B, aad C matricies for the representative flight condition of Table 2.5,

the resulting F and G(0) matricies have full rank of m = 5.

If the plant equations are known in advance, the approximations of Equations 3.33

and 3.34 can be used. Otherwise, off line, open loop tests could be performed on the plant

to determine H(T) and G(O) for a known input.

The aircraft equations

4 = Ax + Bu

and

y -= CX
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can be expressed in terms of ARNIA coefficients. The algorithin developed by Velez Ii)

was ,sed to generate the ARMA (oefficients for the model.

y(kT) + Ay(k - 1)T + + A.vy(k - N)T = Blu(k - 1)T + - + B.vu(k - N)T (3.37)

It can be seen from the equation above that

If(T) = B1

and since, v(O)=O,

G(O) = (I + A, + -- + Av)-(Bj + . + B,v)

3.5 ADAPTIVE STEP RESPO.NSE PI CONTROLLER

There are many parameter adaptive algorithms from which the designer can choose.

Hammond chose to use a least squares method since -It is conceptually simple and exhibits

statistical properties that are as good as those of maximum likelihood method for most

practical situations." (4:3-12)

The parameter that is to be estimated is the ARMA coefficient representation of the

plant, or the vector 0. The ARMA model representation of Equation 3.37 is used and the

ARMA output Equations 2.6., 2.7. and 2.8 are repeated here.

y(kT) = OT(kT)6(kT)

where for the reduced second order ARMA model of the CRCA,

OT( kT) = [A T .4 T B T B TI

(kT)T = [-YT(k - I -_ YT(k -2)T uT(k - I)T ?,T(k -2)T r
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Hammond used the following equations to implement the least squares estimate of 10

(4:3-13).

O(k + 1) O(k)+ P(1'-(k+ 1)-(- 1)[y(,) + 1) 4 1 )(k)] (3.38

P(k+ 1) = P(k)- P(k)x(k+ 1)y(k+ 1)xT(k+ 1)P(k)
1

7( + 1) = [a t + X T ( k + )P ( k ) ( k + )] , '. 10 )

where x(k + 1) is Hammond's notation in the adaptive algorithm for o(k + 1). P(k) is the

covariance matrix, and at is a weighting factor = 1 for this effort.

Calculation of P(k+l) in Equation 3.39 can be changed by the introduction of a for-

getting factor, A (Hammond used -t as the forgetting factor, but that notation is confusiig

since there is another term -(k + 1) used in the Equations 3.38 and 3.39).

P(k + ) [= [P(k)- P(k)x(k + 1)r(k + 1)X T(k + I)P(k)] (:3.41'1
A

and -,(k + 1) of Equation 3.40 now becomes

1
'(k + 1) = [Aat + xT(k + 1)P(k)x(k + 1)] (3.42)

When the forgetting factor is incorporated in simulations, Equations 3.38, 3.41, and

3.42 are used to update the changing ARMA coefficients.

This chapter details the mathematical development of Porter's discrete PI control

laws: discrete PI, step response, and parameter adaptive based upon an ARMA model.

Procedures are outlined for determination of the controller gain matrices K, and K 2 based

upon known plant matrices or step responses. The chapter concludes with a presentation of

the recursive least squares parameter estimation algorithm to be used. Chapter 4 contains

the results from the discrete PI controller.
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IV. DISCRETE PI CONTROLLER

4.1 TRA NSFER F UNCTION A NA L YSIS

In addition to the plant meeting the conditions listed in Section 3.2, the steady state

control surface deflections necessary to perform each maneuver in every flight condition

(including failures) must be examinea. If the amount of control surface deflection required

in steady state is larger than the position limits listed in Table 2.6, then the maneuver

cannot be performed for that particular flight condition. The control surface rate and

position limits cannot be exceeded at any time in the simulations or the responses will

become nonlinear when limit circuits are encountered. The steady state surface deflections

determined for each combination of maneuvers will be used as a guide to determine the

feasibility of maneuver performance.

The output relationship shown below is used to determine the steady state surface

deflections (inputs) required to perform each maneuver.

y(s) = G(s)u(s)

Applying the final value theorem, where u,, is the magnitude of the step input and Yss is

the magnitude of the desired system output,

us, = G(O)-ys, (4.1)

where G(O) is defined in Equation 3.34, which is repeated below, and y, = r(t) for a

tracking system.

G(O) = -CA-B

The five maneuvers and their associated input commands are

1. pitch rate tracking - q=20 /sec for 3 sec and zero thereafter. The pitch rate command

is generated by ramping 0 to 60 over 3 seconds.
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2. coordinated turn - 450 roll angle (€) and yaw rate (r) determined from Equation 4.2

(4:4-7).

r _ sin(0)57.3-e (4.2)
sec / rad

where,

g - the gravitational constant (32.174ft/sec2 )

V the forward velocity of the aircraft

= the desired bank angle

3. sideslip tracking - 20 of sideslip angle (3)

4. flat turn - 1°/sec yw rate (r) with zero roll angle (€)

5. banked turn - only roll angle (0) commanded

Table 4.1 gives the corresponding yaw rate (r) for each of the flight conditions con-

sidered in this thesis when the bank angle (0) is equal to 45 degrees.

Table 4.1. rcmd - 450 Bank Angle

Flight Condition Velocity Gravity Yaw Rate
ft/sec ft/sec2  deg/sec

ACM Entry 1 895.0 32.17 1.457
ACM Exit 263.0 32.17 4.956
TF/TA 1004.9 32.17 1.297

The output vectors for each maneuver, y,,, consist of the following five outputs and

the units are expressed in ft/sec for the velocity, radians for the angles, and rad/sec for

the yaw rate,

v = forward velocity

,3 = sideslip angle

9 = pitch angle

0 = bank angle

r = yaw rate
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and the input vector, u.,, consists of the five control surface inputs, where the units are

expressed in degrees.

bSc = left canard

6cr = right canard

bte = left trailing edge

btr = right trailing edge

6rud = rudder

The steady state output vector for a 450 coordinated turn in ACM Entry is:

0.0000 ft/sec

0.0000 rad

Yas = 0.1047 rad (4.3)

0.0000 rad

0.0000 rad/sec

and from Equation 4.1, the steady state surface deflections are:

-1.4411 deg

1.4411 deg

Usa = 0.4767 deg (4.4)

-0.4767 deg

-2.6545 deg

The necessary surface deflections to perform each maneuver in all flight conditions

considered are listed in Tables 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7. The G(0) for 25% loss of

rudder in ACM Entry is not invertible.
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Table 4.2. Steady State Control Inputs - Pitch Rate Tracking

Flight Condition 1 6 r 6 t bt rd
I (deg) I (deg) (deg) (deg) (deg)

ACMENTRY 1.2100 1.2100 1.3836 1.3836 0.0000
ACM30TL 2.6967 2.7687 5.4502 3.1944 0.0000
ACM50CL -16.3074 -3.6573 -4.6384 -6.0154 -3.6573
ACM25RL N/A N/A N/A N/A N/A
ACMEXIT -16.4536 -14.4260 -31.9885 -28.6533 -3.0725
TFTA 1.0384 1.1469 1.6532 1.5927 -0.0945
TFTA30TL 0.8025 0.7998 2.0189 1.1727 -0.0013
TFTA50CL 2.2060 1.1090 1.8015 1.7633 0.0060
TFTA25RL -2.1867 3.2095 1.0801 1.3309 5.3962

where,

ACMENTRY = ACM Entry (nominal flight condition)

ACM30TL = 30% loss of effectiveness of the left trailing edge - ACM Entry

ACM50CL = 50% loss of effectiveness of the left canard - ACM Entry

ACM25RL = 25% loss of effectiveness of the rudder - ACM Entry

ACMEXIT = ACM Exit flight condition

TFTA = TF/TA flight condition

TFTA30TL = 30% loss of effectiveness of the left trailing edge - TF/TA

TFTA5OCL = 50% loss of effectiveness of the left canard - TF/TA

TFTA25RL = 25% loss of effectiveness of the rudder - TF/TA
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Table 4.3. Steady State Control Inputs - 450 Coordinated Turn

____________ (de) deg) (deg) T deg) (deg)

ACNIENTRY -1.4411 1.4411 0.4767 -0.4767 -2.6545
AC.)v3OTL -1.6473 1.5466 0.7891 -0.5858 -2.8283
ACM50CL 0.8474 1.6176 1.1141 0.7271 -1.2235
ACM25RL N/A N/A N/A N/A N/A
AGMEXIT 46.8304 42.2510 100.3224 90.4552 7.7426
TFTA -0.3664 0.3664 0.2181 -0.2181 -0.7977
TFTA30TL -0.4190 0.3684 0.3435 -0.2782 -0.8498
TFTA50CL -0.9488 0.1031 -0.1306 -0.4729 -0.6676
TFTA25RL 1-1.9385 11.9385 10.2696 1-0.2696 11.3886

Table 4.4. Steady State Control Inputs - Sideslip Tracking

Flight Condition 6bj [6, ] w bti ter -rd1

_________ (deg) [ (deg) J(deg) (deg) j(deg)]
ACMENTRY 1.4671 -1.4671 0.2431 -0.2431 4.2623
ACM30TL 0.8361 -0.9397 0.8124 -0.6032 -3.4561
ACM50CL -0.3633 -0.6934 0.1201 -0.9094 2.1692
ACM25RL N/A N/A N/A N/A N/A
ACMEXIT 0.9444 -0.8711 1.6158 -1.4159 1.2350
TFTA 1.0973 -1.0973 0.2444 -0.2444 3.5678
TFTA30TL 0.9310 -0.9946 0.4317 -0.3497 3.3312
TFTA50CL 2.9287 -0.3182 1.3314 0.5312 3.0699
TFTA25RL 3.5708 -3.5708 10.2099 1-0.2099 10.88781
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Table 4.5. Steady State Control Inputs - Flat Turn

Flight Condition 1 i 6c,. [ tel ] 'ter J ,r-d

I (deg) (deg) (deg) (deg) I (deg)

ACMENTRY 9.3284 -9.3284 -3.0266 3.0266 15.7374
ACM30TL 11.0335 -10.3688 -5.2088 3.8672 17.4679
ACM50CL -5.6600 -10.8046 -7.3813 -4.9166 6.6545
ACM25RL N/A N/A N/A N/A N/A
ACMEXIT 7.4212 -6.8452 -5.1607 6.7319 15.2521
TFTA 2.9565 -2.9565 -1.6359 1.6359 5.0267
TFTA30TL 3.4114 -3.0262 -2.6129 2.1166 5.5084
TFTA50CL 7.7362 -0.8407 1.1951 3.7252 4.0173
TFTA25RL 13.2925 -13.2925 -1.8054 1.8054 -9.1315

Table 4.6. Steady State Control Inputs - 450 Banked Turn

Flight Condition 6c1 1, 'tet [ te,. 1 brud
(deg) (deg) (deg) (deg)j (deg)

ACMENTRY -15.0300 15.0300 4.8857 -4.8857 -25.5798
ACM30TL -17.7202 16.6512 8.3768 -6.2193 -28.2744
ACM50CL 9.0926 17.3571 11.8667 7.8892 -10.9173
ACM25RL N/A N/A N/A N/A N/A
ACMEXIT 36.0196 52.2227 107.8402 80.6486 -14.4756
TFTA -4.2022 4.2022 2.3406 -2.3406 -7.3194
TFTA30TL -4.8451 4.2947 3.7335 -3.0243 -7.9965
TFTA50CL -10.9859 1.1938 -1.6811 -5.3060 -5.8797
TFTA25RL -19.1844 19.1844 2.6120 -2.6120 13.2360
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Table 4.7. Steady State Control Inputs - 150 Banked Turn

Flight Condition 1 t 1 tte, 'ud

I_______6______4(deg) (deg) (deg) (deg) (deg)

ACMENTRY -10.0181 10.0181 3.2565 -3.2565 -17.0499

ACM30TL -11.8112 11.0987 5.5835 -4.1454 -18.8460
ACM50CL 6.0605 11.5692 7.9096 5.2585 -7.2738
ACM25RL N/A N/A N/A N/A N/A
ACMEXIT 24.0085 34.8085 71.8797 53.7554 -9.6486
TFTA -2.8009 2.8009 1.5601 -1.5601 -4.8787
TFTA30TL -3.2294 2.8626 2.4885 -2.0158 -5.3300
TFTA50CL -7.3225 0.7957 -1.1205 -3.5367 -3.9190
TFTA25RL -12.7871 12.7871 1.7410 -1.7410 8.8223

Comparison between the necessary steady state control surface deflections to perform

the maneuvers listed in Tables 4.2, through 4.7 with the control surface limitations listed in

Table 4.8 determine which maneuvers can possibly be performed in each flight condition.

Table 4.8. Control Surface Position and Rate Limits

Surface Position Limit Rate Limit
(deg) (deg/sec)

Canards +60 -30 ± 100

Trailing Edges +30 -30 ± 100
Rudder +20 -20 ± 100

Comparison between Tables 4.2 - 4.7 and Table 4.8 yields the fact that only the

sideslip tracking and flat turn maneuvers can be performed in ACM Exit. The magnitude

of the banked turn must be reduced to 15* in ACM Entry, and the results for the 25%

rudder loss conditions are questionable.

4.2 TIME RESPONSES

The time responses obtained include the two maneuvers investigated by Hammond,

pitch rate tracking and the coordinated turn, plus an additional three maneuvers listed

in Section 4.1. All maneuvers are investigated in all failure conditions possible, including

the new case of 25% rudder loss. A single set of design parameters, 0i, M 3 1 , M 4 2 , and Ao
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from Equations 3.28, 3.23, and 3.29 are used for all tested flight conditions. An attempt is

made to obtain a universal set of gains that will stabilize the aircraft in all combinations

of maneuvers and failure situations. The values of the design parameters are chosen to

optimize the time responses and to try to keep all individual controller gain values below

20. The gain values are minimized in order to reduce the magnification of noise signals.

The command inputs used are ramped step inputs since it is physically unrealizable

for a pilot to generate a pure step input. The following approximation has been used

(4:5-14)

ramp time = position limit 600
rate limit 1000/sec

where the largest allowable surface deflection for the canard is used. A ramp time of 0.5 sec

is used for all inputs to simplify the MATRIXx simulations. In addition to the ramping,

Hammond also inserted a prefilter to remove high frequency spikes. The prefilter is selected

to limit the bandwidth to under 10 rad/sec which does not adversely affecting the speed

of system response.
10

Prefilter 10
S+ 10

All of the time responses collected for the discrete PI design used the following values

of at,, M 3 1 , M 4 2 , and A0 in Equations 3.28 and 3.29:

a, = 0.2 =31 = 0.1

0"2 = 0.05 Mn4 2 = 0. 1

a3 = 0.5 A0 = 0.3

a4 = 0.3

a's = 0.5

Appendix C contains the K, and K 2 matrices for each flight condition and Table 4.9

shows the stability of results for all flight conditions using the design parameters listed

above. The time responses have been generated using the input commands shown in

Figures 4.1 through 4.5. The magnitudes of the input commands (displayed in degrees)

are shown for ACM Entry. The yaw rate differs on the coordinated turn input for TFTA
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(see Table 4.1), and the banked turn can be performed at 450 in TFTA.

Table 4.9. Stability Analysis Using discrete PI design parameters

Flight Stable With Requires Gain

Condition Universal Gain Change

ACMENTRY X

ACM30TL X (i)
ACM50CL X
ACM25RL X

ACMEXIT X
TFTA X

TFTA30TL X
TFTA50CL X
TFTA25RL X

(1) The flat turn maneuver is not stable for the universal gain.

The four responses in Figures 4.1 through 4.5 are defined as follows

-/3 ... O

4-9 r
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The resulting time responses for simulations in ACM Entry, ACM Exit, and

TFTA follow and sample surface deflections and rates are included only for the first ma-

neuver, pitch rate tracking. Limiting devices are included in the simulation to keep the

surface deflections and rates within the limits defined in Table 4I.8. Once the surfalce de-

flection and rate limits are exceeded, the limiting devices are saturated u Hd lhe ,Inii~hrt io

bc-comes nonlinear and this normally drives the time responses unstable.

The four responses on each of the next plots are again defined as follows

- 3 ... 0

- .- r,
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seconds

Figure 4.6. Dlcute Controller pitch rate tracking response in ACM Entrv
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Time responses for a selected maneuver, sideslip tracking, are shown for all of the

f;iJhure conditions in ACM Entry and TFTA. The simulations were performed 11sigi

tke fixed K1 and K,. values calculated for the non-failed ACM Entry and TFTA flight

k-WiIrions (see Appendix C). From Figures 4.22 and 4.25, it can be seent that the sids[i Ip

,racking task cannot be accomplished for the 25% rudder loss in ACNI Entry or TFTA.
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Figure 4.20. Discrete Controller sideslip maneuver response in ACNI30TL
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4.3 FREQUENCY ANALYSIS

Conventional frequency analysis of a MIMO system is difficult, but is made Pasier

when the outputs are relatively decoupled, as is the case with this design method. Since the

outputs are decoupled, only the diagonal transfer fuction pairs are considered, i.e, 3 / 3cd.

--For s: atically unstable aircraft, the military specification MIL -F -9490D, specifies the

gain margin to be ± 6.0 dB and the phase margin to be ± 45 degrees. For these types of

aircraft the system may have a low and high frequency gain margin. At the low frequency

crossover frequency of -180 degrees the gain margin should be smaller than -6.0 dB. At the

high frequency crossover of -180 degrees the gain margin should be greater than +6.0 dB

[1-17)." The Nichols plots Of 0/0cmd in Figures 4.28 and 4.32, illustrate the high and low

gain margin characteristics of the unstable CRCA.

The air-raft/controller model simulated in MATRIXX is a hybrid model consisting of

a conltinuous plant with a discrete controller. In order to conduct a frequency analysis, an

equivalent discrete model of the overall system must be generated. This is accomplished by

treating the controller as a continuous unit and then transforming the "continuous system"

to the wt plane via a Hofmann transformation. The Hofmann transformation used in this

thesis was obtained from Hammond's computer files (4:4-29).

[ 1 (4s)T 2 (A(s)T 4  17 S)T 1 A(s)
3~' 2 15 2 315 2 J

(4w)= { I- (A(s)T) 2 + 2 (ILs)T 4 
-17 (s)) 6]1~ ) i F(wL')T 1

H(I') = C(s)
2 2 15( 2 2(A s 4  2 315 2] 2

Dw') = ___,) _ + 2 (4_ B(s)

According to Houpis and Lamont (5), quantities in the w' plane can be handled like

continuous quantities and the z plane roots can be found from the following equation.

Tw' + 2
-Tw' + 2
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Selected Nichols and Bode diagrams are included for both the healthy ACM Entry

and TFTA flight conditions. Figures 4.26 through 4.33 show the open loop frequency

characteristics of the discrete PI controller design. The closed loop Bode plots show the

bandwidth of the system with the control law incorporated for the two selected outputs,

in Figures 4.34 through 4.37. The bandwidth characteristics of the healthy aircraft design

are included in Table 4.10 and the wi plane roots are listed in Table 4.11.

"lable 4.10. Bandwidth of discrete PI design

output ACM Entry] TFTA

v 7.22 6.89
3 0.30 0.17
0 9.77 7.22

0 10.23 7.74
r 9.54 8.90

Table 4.11. wi plane roots for ACM Entry and TFTA

ACM ENTRY TFTA

-0.1119 ±j 0.1536 -0.2266 ±j 0.1380

-0.2960 -0.3017
-0.3014 -0.3020
-0.3055 -0.3074
-0.4947 -0.7228
-2.0425 -3.6890
-8.2710 -9.9482 (5)
-9.9482 (5) -11.0842 ±j 5.1379
-7.4002 ±j 10.4555 -13.1893
-14.7533 ± 13.2824 13.1976
-38.8237 -29.2678 ±j 35.2494
-40.7383 ±j 25.8551 -16.4291 ±) 54.7333
-36.6469 ±j 33.5002 -57.4723
-50.2105 ±j 29.3661 -51.5347 ±j 30.4394

-52.7656 ± 30.7213 -61.4256
-58.1497 ±j 31.3455 -57.9341 ±1 31.3275

-14.8236 ±1 74.5446
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The phase and gain margins for ACM Entry and TFTA are listed in Table 4.12.

Table 4.12. Gain and Phase Margins - Discrete PI Design

ACM Entry
Transfer Gain Margin W, Phase Iv;
Function (dB) (rad/sec) Margin (rad/sec)

Low [ High Low ] High (deg)

V (2) 14.26 (2) 70.62 74.64 8.07

(2) 48.54 (2) 50.54 (1) (1)
0 -25.22 12.65 2.48 64.44 39.66 21.51
0 (2) 17.07 (2) 64.34 44.80 14.47
r (2) 8.60 (2) 50.84 52.45 20.10

TF/TA

Transfer Gain Margin LO Phase L

Function (dB) (rad/sec) Margin (rad/sec)
Low I _High Low I High (deg)

V -39.18 16.51 0.24 50.40 70.61 7.21

/3 (2) 48.54 (2) 50.69 (1) (1)

0 -65.15 6.63 0.05 43.22 43.75 22.38
0 (2) 18.66 12) 70.68 57.91 13.80
r (2) 8.73 (2) 51.56 126.45 0.55

180.03 0.74
54.45 20.35

(1) Response is always less than 0 dB

(2) No low frequency gain margin (phase > -180 degrees)

This chapter contains a listing of the steady state control surface deflections to per-

form each maneuver in the chosen flight conditions. The design parameters and time

responses for the discrete PI controller are presented for non failure and single failure

conditions. Frequency analysis of the discrete design is presented for the non failed cases

ACM Entry and TFTA. Chapter 5 contains the time responses for the step response

controller and adaptive algorithm.
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V. STEP RESPONSE METHOD AND ADAPTIVE RESULTS

5.1 STEP RESPONSE METHOD

The time responses collected for the step response method use the same inputs dis-

played in Figures 4.1 through 1.5 and the following values of aj, in3 1 , M 4 2 , and -yir, in

Equations 3.35 and 3.36.

a, = 0.1 yir1  = 0.2

Or2 = 0.015 _Y r2 = 0.2

0"3 = 0.01 -7r3 = 0.2

Or4 = 0.05 y7 r4 = 0.2

a5 = 0.075 -1r5 = 0.2

M31 = 0.1 M42 = 0.1

The w' plane roots are calculated for the step response method in the same fashion

as discussed for the discrete PI controller in Section 4.3 and are included in Appendix C

along with the fixed gain values of K, and K2 used in the simulations for the no failure

cases ACM Entry and TFTA. The computer simulations are conducted with a gain of

1. The gain factor in the control law of Equation 3.32, T, is already incorporated in the

gain matrices listed in Appendix C.

Table 5.1 shows the stability results for all the possible maneuvers (see Section 4.1)

in the various flight conditions for the step response method design parameters. The same

time responses are shown here as have been presented for the discrete PI controller. The

four responses on each plot are distinguished according to the same legend used in Chapter

4.
-/3 ... 0

--- .- r
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Table 5.1. Stability Analysis Using step response design parameters
Flight Stable With Requires Gain

Condition I Universal Gain Change

ACMENTRY X
ACM30TL X
ACMSOCL X
ACM25RL X
ACMEXIT X (1)

TFTA X
TFTA30TL X
TFTA5OCL X (2)

TFTA25RL X

(1) = The responses are slightly divergent for ACM Exit over the 20 second simulation
time.
(2) = All results have a distinct periodic oscillation and slowly diverge over the simulation
duration.
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5.2 ADAPTIVE CONTROLLER

When a single set of design parameters for a fixed-gain design do not adequately

stabilize and control the aircraft, either gain scheduling or an adaptive algorithm can be

used. Hammond's adaptive algorithm, which is built on the step response method, is

examined.

Since the aircraft plant can be represented by a discrete difference equation
for a given sampling time T, control law gains are calculated by manipulating
the coefficients of this difference equation. By measuring input and output
data, on-line, the coefficients that constitute the difference equation itself can
be updated continuously and new PI controller gains calculated each time the
measurements are taken. Predicting the new plant parameters allows gain
calculations to be accurate and appropriate for the new flight condition or
configuration. (4:6-1)

A recursive least squares (RLS) algorithm is used to update the ARMA coefficients each

sampling period which are in turn used to determine the controller gain matrices.

The RLS algorithm is written in FORTRAN executable code and accessed each

sample period in the MATRIXx simulation. The algorithm is initialized with a covariance

matrix P(0) of I and the matrix containing the past output and input values, x(0)= Q.

ARMA coefficients for either the non-failed ACM Entry or TFTA flight conditions are

used for the first two sampling periods, 0.05 seconds, to ensure that the x(k + 1) matrix

is fully populated before the ARMA coefficients in 0(k + 1) are estimated. The rate of

calculation of the varying ARMA coefficients is controlled by the choice of forgetting factor,

A. The applicable RLS Equations 3.38, 3.41, and 3.42 are repeated he-e with the weighting

factor, at=1.

0(k + l) = 0(k) + P(k)x(k + 1)y(k + l)[y(k + 1) - x T (k + 1)O(k)]

P(k+ 1) = 1-[P(k)- P(k)x(k+ 1)-(k+ 1)XT(k+ 1)P(k)]

1
(k+ 1) = -I

[,Aat + XT(k + 1)P(k)x(k + 1)]

The source code for the adaptive algorithm is listed in Appendix D.
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The adaptive controller is initially evaluated by analyzing the results of all of the

niiiieiivers performed in ACM Entry and TFTA with no failures. The 'orgetting factor.

\ is set to one and the ARNIA coefficiLnts are monitored at the onset and upon coitplet il

OFt lihe maneuvers. The ARMA coefficients do not change when the adaptive a;gunitimi

i run. which is the expected result. The outputs are expected to closely reeltihi' tho,,

,ilTained from the step response method, since the adaptive simulations start with the sane,

.\t?. lA plant models used in the step response simulations. The following time 1slbons,..

however, do not show 'he desired decoupling of outputs that has been obtained from hot 1

tk, discrete PI and step response design methods.

The four responses on each of the next plots are defined as flllow.,

r
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Figure 5.19. Adaptive pitch rate tracking response in ACM F' trv
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A da ptive sim Iulat ions are now performed wit i a single failure occm I rri, i ( ,i

t h,_ eginning of the simulation or at two seconds. The ARMA v hlts ;it are d

tio Af.TRIX.." to initialize the 0 vector are for non-failed cases. The si nulations are

perforined for a variety of A values in the single failure cases of 30'X left trailil ,eu,

ls, and .507c left canard loss for the sideslip tracking and flat turn maneuvers. ()Oitlv t,

roponses generated in the failure condition ACM30TL are presented i ie th, el ,.r -,

V iced ' ivergent responses. For the two maneuvers tested in the iv.t, dif',iiI :u! ,4,

the responses obtained from a A =.90 are the most stable. 1h' ,

I b for 3t) seconds for the case of failure introduction at two seconds in ourdoi at o Wv

vspmlnses to settle.

The four response,, on each plots are defined according to the f1Q vi ,
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The adaptive controller is initially evaluated by analyzing the rsults of all of Ow
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Adiptive imulations are now performed with a single failure r(:cmi il,_ tl , ,! ,:
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This chapter contains the design parameters and time responses for the step response

PI controller and results of the adaptive algorithm. The results of all work in this thesis

are analyzed in Chapter 6.
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VI. CONCL USIONS AND RECOMMENDATIONS

6.1 SUMMARY

6. 1.1 DISCRETE PI CONTROLLER The time domain and frequency results ob-

tained for the discrete PI controller, presented in Chapter 4, show that the outputs are

indeed highly decoupled. The velocity results are not plotted in the same figures as the

other four outputs because the 180 0/7r radian conversion fa-tor is not applicable. The

velocity responses are monitored and never peaked above 2 ft/sec, which is well within

an acceptable range of variation. The time responses for the non failed flight conditions

show that the design is very robust. The bandwidth of the system was increased by a

factor of 100 over tht previous design and is now jubt under 10 rad/sec for most of the

five input/output pairs. The phase an,: gain margins specified by MIL - F - 9490D are

met in almost all instances. The goal uf determining one set of design parameters that

can be used to determine fixed controller gains for all three flight conditions are met and

robust results are obtained for ACM Entry, TFTA, and ACM Exit. An effort is made

to limit the values of the individual elements in the K, and K2 matrices. Examination

of Appendix C demonstrates that the ACM Entry and TFTA gains are in a reasonable

range and only a few of the elements in the ACM Exit gain matrices are larger than

desired. The extension of the fixed-gain design to the cases of single failure conditions

is fairly successful in that for three of the six failure conditions, the aircraft does remain

stable and perform the maneuver with some degree of flying qualities intact. However,

some type of gain scheduling scheme or adaptive control is deemed necessary by the fat

that three failure condition" yield unstable responses.

6.1.2 STEP RESPONSE METHOD PI The step response method PI controller

time domain results show the same degree of stability and decoupling between outputs,

using one set of design parameters, as are obtained from the discrete PI controller. The

step response method shows two improvements over the discrete P1 controller design; the

,3 undershoot in the flat turn is reduced by approximately one third in ACM Entry

and TFTA, and the fat turn can now be successfully performed in ACM3OTL. The

goal of obtaining individual gain elements of less than 20 is not possible in this method
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and the step response controller can only stabilize two of the six single failure conditions.

Examination of the w' roots listed in Appendix C also shows that all roots are not in the

L HP.

6.1.3 ADAPTIVE CONTROLLER The results of the adaptive controller are not

all as expected. The simulations performed for the no failure cases show much larger

o outputs in the sideslip tracking responses and slightly larger 0 responses in the flat

turn maneuver than are in the step response method time responses. This result occurs

even though the ARMA coefficients are invariant. This characteristic of the 0 output

undoubtedly carries over into the single control surface failure simulations. The steady

state values of the adaptive outputs are, however, very close to the steady state step

response outputs.

Hammond had worked with the coordinated turn in ACM30TL, so two different

maneuvers in two single failure conditions are attempted. However, the responses can not

be stabilized in ACM50CL, TFTA30TL, and TFTA50CL. It is interesting to note that

it is the 0 response which is consistently divergent in the TFTA failure cases. The steady

state outputs for the two sets of failure onsets are reasonably decoupled at the completion

of the simulation.

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH

There are many areas that can be examined using Porter's control law techniquoc on

the CRCA. The first of which are areas of immediate interest and deal with the parameter

adaptive algorithm.

1. Determine why there are differences between the sideslip tracking and flat turn ma-

neuvers obtained from the step response PI method and adaptive simulations.

2. Stabilize the adaptive simulations in the two failure conditions attempted in this

thesis.

3. Assess the effects noise in the output measurements have on the fixed-gain and adap-

tive designs.
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4. Use non-linear aircraft equations to perform simulations with the design parameters

determined from the linear point designs and compare the results.

5. Investigate the proportional plus integral plus derivative (PID) control law on the

same set of maneuvers and failure conditions to remove the slow modes of the time

responses.

6. Compare the results obtained from the PI design techniques to those obtained using

the PID control law.
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Appendix A. AIRCRAFT STATE SPACE .1!ODELS

The aircraft models used in the MATRIXx simulation are listed on the followiing

piages.
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Table A.l. ACM Entry Matrices - No Failures

.0000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 1.0000 .U.50
- 32.1804 .0000 -. 0119 -. 0186 -31.2350 .0000 .0o0 .0000

- 1.0634 .0000 -. 0324 -1.0634 894.4548 .0000 .0000 .0000
.0000 .0000 .0000 .0069 -.6015 .0000 .0000 .0000

.0000 .0360 .0000 .0000 .0000 -.0929 .0349 -. ?:

.0000 .0000 .0000 .0000 .0000 -27.8066 -2.0376 .4913

.0000 .0000 .0000 .0000 .0000 2.4582 -. 0241 -.4377

.0000 .0000 .O00u .0000 .0000 .0000 .0000 .0000 .0000
0000 .0000 0000 .0000 .0000 .0000 .0000 .0000 .0000

.0411 .0411 .1322 .0866 .1322 .0866 .1018 .1018 .0000
B -.3163 -.3163 -.9597 -.6194 -.9597 -.6194 -1.0183 -1.0183 .()000

.1014 .1014 -.0284 -.0215 -.0284 -.0215 -.0200 -.0200 .0000

.0003 -.0003 -.0002 -.0001 .0002 .0001 -.0001 .0001 .0006

.0762 -.0762 .2219 .2011 -.2219 -.2011 .1109 -. 1109 .1144

.0486 -.0486 .0029 .0021 -.0029 -.0021 .0021 -.0021 -.(05,14

.0000 .0000 1.0000 .0349 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000

C 1.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000

B Matrix for Five Control Surfaces

.0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000

.0411 .0411 .3206 .3206 .0000

-.3163 -.3163 -2.5974 -2.5974 .0000

.1014 .1014 -.0699 -.0699 .0000

.0003 -.0003 -.0004 .0004 .0006

.0762 -.0762 .5339 -.5339 .1144

.0486 -.0486 .0071 -.0071 -.0544

X= 0 i t W q 3 P r I(.\.)

u = 'cl 6 cr 6 tel ter 6rd (\.2)
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Table A.2. ACM Entry Matrices - 30% Loss Of Effectiveness Left Trailing Edge

.0000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 1.0000 .0450

-32.1420 .0000 -. 0050 .0550 -39.9760 .0000 .0000 .0000
-1.4370 .0000 -. 0240 -1.0280 894.1070 .0000 .0000 .0000A =

.0000 .0000 .0000 .0070 -. 6920 .0000 .0000 .0000

.0000 .0360 .0000 .0000 .0000 -. 0990 .0,150 -. 9990

.0000 .0000 .0000 .0000 .0000 -31.8340 -2.1380 .5160

.0000 .0000 .0000 .0000 .0000 2.6670 -. 0310 -. 4420

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0520 .0520 .0000 .0780 .1040 .0670 .0930 .0800 .0000
-. 3300 -. 3300 .0000 -. 6220 -. 9650 -. 6220 -. 7350 -. 7350 .0000

.1020 .1020 .0000 -. 0210 -. 0280 -. 0210 -. 0200 -. 0200 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0010

.0800 -. 0760 .0000 .2010 -. 2220 -. 2010 .1110 -. 1110 .1150

.0490 -. 0480 .0000 .0030 -. 0040 -. 0030 .0030 -. 0030 -. 0550

.0000 .0000 1.0000 .0410 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000

C = 1.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000

B Matrix for Five Control Surfaces

.0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000

.0520 .0520 .1710 .2510 .0000

-.3303 -.3300 -1.3570 -2.3220 .0000

.1020 .1020 -.0410 -.0690 .0000

.0000 .0000 .0000 .0000 .0010

.0800 -.0760 .3120 -.5340 .1150

0490 -.0480 .0060 -.0100 -.0550

x= [ € u w q 0i p r (A.3)

u= 6 d bcr btel 6 ter brud (AA)
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Table A.3. ACM Entry Matrices - 50% Loss Of Effectiveness Left Canard

.0000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000 1

.0000 .0000 .0000 .0000 .0000 .0000 1.0000 .0390
-32.1500 .0000 -.0080 .0580 -36.6690 .0000 .0000 .AOuuU
-1.2460 .0000 -. 0290 -1.0450 894.3280 .0000 .0000 .0000

.0000 .0000 .0000 .0040 -. 6460 .0000 .0000 .0000

.0000 .0360 .0000 .0000 .0000 -. 0820 .0390 -.9990

.0000 .0000 .0000 .0000 .0000 -23.8380 -2.0700 .4990

.0000 .0000 .0000 .0000 .0000 2.4580 -. 0270 -. 4520

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-.1560 -.1150 .1320 .0840 .1320 .0840 .1000 .1000 .0000
-.1150 -.2250 -.9610 -.6210 -.9610 -.6210 -.7320 -.7320 .0000B =
.0360 .0720 -.0280 -.0220 -.0280 -.0220 -.0200 - .2200 .0000
.0000 -.0010 .0000 .0000 .0000 .0000 .0000 .0000 .0010
.0350 -.0690 .2220 .2010 -.2220 -.2010 .1110 -.1110 .1140

.0240 -.0490 .0030 .0030 -.0030 -.0030 .0020 -.0020 -.0550

.0000 .0000 1.0000 .0349 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000

C = 1.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000

B Matrix for Five Control Surfaces

.0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000

-.1560 -.1150 .3160 .3160 .0000

B -.1150 -.2250 -2.3140 -2.3140 .0000
.0360 .0720 -.0700 -.0700 .0000
.0000 -.0010 .0000 .0000 .0010

.0350 -.0690 .5340 -.5340 .1140
•.0240 -.0490 .0080 -.0080 -. 0.550

z= O u w q f0 p r I A.5)

U= [6cl 6  r btel bter ad] (A.6)
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Table A.4. ACM Entry Matrices - 25% Loss Of Effectiveness Rudder

U000 .0000 .uuu .u000 1.0000 .u000 .0000 .0060
.0000 .0000 .0000 .0000 .0000 .0000 1.0000 .0350

-32.1540 .0000 -. 0080 .0540 -31.5470 .0000 .0000 .000o
-1.1349 .0000 -. 0320 -1.0580 894.4400 .0000 .0000 .0000

.0000 .0000 .0000 .0070 -. 6740 .0000 .0)0o) .0000

.0000 .0360 .0000 .0000 .0000 -. 0920 .0:350 -. 9990

.0000 .0000 .0000 .0000 .0000 -27.8550 -2.0330 .4600

.0000 .0000 .0000 .0000 .0000 2.0520 -. 0270 -. 4190

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0410 .0410 .1320 .0870 .1320 .0870 .1020 .1020 .0000
B -.3170 -.3170 -.9600 -.6200 -.9600 -.6200 -.7330 --.7330 .0000

1020 .1020 -.0280 -.0220 -.0280 -.0220 -. Uou -.02oo .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0760 -.0760 2220 .2010 -.2220 -2010 1110 -. 10ll .0870
.0000 .0000 .0000 .0000 .0000 .0000 -2.0520 .0270 .1190

.0000 .0000 1.0000 .0349 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000
C = 1.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000

L .0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000

B Matrix for Five Control Surfaces

.0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000

.0410 .0410 .3210 .3210 .0000
B -.3170 -.3170 -2.3130 -2.3130 .0000

.1020 .1020 -.0700 -.0700 .0000

.0000 .0000 .0000 .0000 .0000

.0760 -.0760 .5340 -. 5340 .0870

.0000 .0000 -2.0520 .0270 .4190

x= 0 6 u w q 0 p r (A.7)

S6' 6
cr ter A.A-

A- 5



Trable A.5. ACM Exit Matrices - No Failures

.0000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 1.0000 .5184
-28.5877 .0000 -. 2762 -. 0283 -136.2190 .0000 .0000 .0000
-4.9465 26.9479 .1330 -. 6753 262.7934 .0000 .0000 .0000A =

.0000 .0000 -. 0018 .0035 -. 6511 .0000 .0000 .0000

.0472 .0322 .0000 .0000 .0000 -. 0245 .4632 -. 8878

.0000 .0000 .0000 .0000 .0000 -7.7280 -1,4530 .968

.0000 .0000 .0000 .0000 .0000 -. 0889 -. 0543 .0456

r .0000 .0000 .0000 .0000 .0000 .000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

-.0253 -.0281 .0206 .0131 .0206 .0131 .0154 .0154 .0000
B -.1512 -.1471 -.1302 -.0848 -.1302 -.0848 -.0997 -.0997 .0000

.011 -.0156 -.0024 -.0018 -.0024 -.0018 -.0016 -.0016 .0000
0007 -.0007 -.0001 -.0001 .0001 .0001 -.000i .0001 .0004
.0113 -.0337 .0270 .0240 -.0270 -.0240 .0135 -.0135 .0277
.0133 -.0121 -.0005 -.0004 .0005 .0004 -.0004 .0004 -.0130

.0000 .0000 1.0000 .4600 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .oOOO
C .0000 .0000 .0000 .0000 .0000 .0000 0000 .1)00

0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0i)0
.0000 .0000 .0000 .0000 .0000 .0000 .0000 1.000

B Matrix for Five Control Surfaces

.0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000
-.0253 -.0281 .0491 .0491 .0000
-.1512 -.1471 -.3147 -.3147 .0000
.0161 .0156 -.0058 -.0058 .0000
.0007 -.0007 -.0003 .0003 .0004

.0113 -.0337 .0645 -.0645 .0277

0133 -.0121 -.0013 .U013 -.0130

0 0 u w q p r I(A.9)

u= 6 6cr btel 6ter 4rud (A.10)
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Table A.6. TF/TA Matrices - No Failures

.0000 .0000 .0000 .0000 1.0000 .0000 .0000 .00o0

.0000 .0000 .0000 .0000 .0000 .0000 1.0000 .0153
-32.1961 .0000 -. 0355 .0357 -15.6105 .0000 .0000 .0000

-. 5002 .0000 -. 0071 -3.2056 1004.8788 .0000 .0000 .0000
.0000 .0000 -. 0003 .0202 -1.6773 .0000 .0000 .0000
.0000 .0320 .0000 .0000 .0000 -. 2538 .0155 -9999
.0000 .0000 .0000 .0000 .0000 -66.9300 -5.4612 1.0349
.0000 .0000 .0000 .0000 .0000 8.2821 -. 0299 -1.2709

.0000 .0000 .0000 .0000 MO00 .0000 .0000 .0000 0100
0000 0000 .0000 .0000 .0000 .0000 .0000 .0000 .000

-. 3284 -. 3284 .2548 .1679 .2548 .1679 .1975 .1975 0000
- 6788 -6788 -1.7517 -1.1313 -1.7517 -1.1313 -1.3351 -1.3351 .0o00B =

.2387 2387 -. 534 -. 0406 -.0534 - 0406 -. 0372 -. 0372 .0000
0012 -0012 -. 0001 -. 0001 .0001 .0001 -. 11001 .0003 .0018
2336 - 2336 4200 3737 -.4200 -. 3737 .2100 -. 2100 .3737
1590 - 1590 .0024 .0012 -.0024 -.0012 -.0012 -.0012 -.1795

.0000 .0000 1.0000 .0138 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000
C 1.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 1.0000

B Matrix for Five Control Surfaces

.0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000
-.3284 -.3284 .6202 .6202 .0000
-.6788 -.6788 -4.2181 -4.2181 .0000
.2387 .2387 -.1312 -.1312 .0000
.0012 -.0012 -.0003 .0005 .0018
.2336 -.2336 1.0037 -1.0037 .3737
.1590 -.1590 .0048 -.0048 -.1795

X= 0 0 u w q .3 p r .\i 1)

= [ cr btel 6ter brud (A. 12)
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Fable A.1. TF/TA Matrices - 30% Loss of Effectiveness Left Trailing Edge

.0000 .0000 OuOu .0000 .uOu0 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 1.0000 .0160
-:32.1704 .0000 -. 0330 -. 0200 -15.2961 .0000 .0000 .0000

-. 5110 .0000 -. 0080 -3.0620 1004.8730 .0000 .0000 .0000
.0000 .0000 .0000 .0210 -1.8240 .0000 .0000 .0001
.0000 .0320 .0000 .0000 .0000 -. 2460 .u1G0 - 1.OUUO
.0000 .0000 .0000 .0000 .0000 -65.9740 -5.-1310 1.2Si)
.0000 .0000 .0000 .0000 .0000 8.1650 -. 0340 -1.2630 J

.0000 .0000 .0000 .0000 .0000 .0000 .000 .0000 00oio

.0000 .0000 .0000 .0000 .0000 .0000 .0000 0000 .0000
-. 3450 -. 3450 .0930 .1580 .2520 .1580 .1140 .1940 0000
-. 6760 -. 6760 .0000 -1.1140 -1.1140 -1.3160 -1.3160 .0000

.2360 .2360 .0000 - .0400 -. 0520 -. 0400 -. 0360 -.0360 0000

.0010 -. 0010 .0000 .0000 .0000 .0000 .0000 .0000 .0020
.2300 -. 2300 .0000 .3680 -. 4150 -. 3680 .2070 -2070 3.00
.1570 -.1570 .0000 .0010 -.0020 -.0010 .0010 -.0610 -.1770

.0000 .0000 1.0000 .0160 .0000 0000 .01)00 t)00

.0000 .0000 .0000 .0000 .0000 1.0000 .0000 u000
C 1.0000 .0000 .0000 .0000 .0000 .0000 ,0000 0.0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 10000

B Matrix for Five Control Surfaces

.0000 .0000 .0000 .0000 .0000

.0000 .000n .0000 .0000 .0000
-.3450 -.3450 .4450 .6042 .0000

B -.6760 -.6760 -2.4300 -4.1550 .0000

.2360 .2360 -.0760 -.1280 .0000

.0010 -.0010 .0000 .0000 .0020

.2300 -.2301 .5750 .9900 .3800

.1570 -.1570 .0020 -.0040 -.1770

X= 0 u w q 0 p r]I (A.13)

1T
= 6 cr btel t r ud j (.'\.11)
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['able .\., . FF/TA Matrices - 50/c Loss of Effectiveness Left Canard

0000 Io0 0)000 .0000 1.0000 0O00 0000 t)) )1

000 .0000 0000 .0000 .0000 .0000 1 000)0 .0110
-32 1720 .0000 - 0380 -0290 -11.0560 0000 0000 0000

- 3540 .0000 -. 0160 -3.6430 1005.4390 .0)00 .ouo0 .oo004-=
() (1)0 0000 OuJO .0140 -2.1070 oitoO 001() lJ)O

0000 .0320 .0000 .0000 .0000 - 27S0 I 10 - 1.00W)

111Ou .0000 .0000 0000 .0 00 -77.1970 -6 1 it') 1 1 17"10
W)O0 .0000 .00-)0 1000 .0000 8.7570 - 0290 -1 .- It650

t)ll t 1u 0 U ) Ul,0 I)0(O 0000 1)I ll)m ) -; l , )lll

S5220 - J790 29 10 19.1 2230_ 2-70 lo

- 3950 - 7710 -2 0190 -1.3040 -20190 -1.3040 -1 5390 -1 5190 .,)00

1390 2750 - .1)610 - 0170 - 0610 -0470 - .0430 -. 1.430 !00011O

.0010 - 00 20 0000 .0000 .0000 .0000 .u0) 01)0 0018

1210 -. 2S30 .4850 .4310 - 4850 -4310 2.130 -. 2130 t110
0)20 -. 1820 .010 .0010 -. 0010 -. 00110 10 =.11110 - 207)

000 001)0 1.0000 0110 .)0000 000) 0() .0 1',t)

.1111)O 0000 0(00 .0000 .)i)00 1.011110 .1 )O0 1Iil'I

CI .J00 0 0000 . 000 .0000 000 0000 !00) 111)110 i)

0)00 1.0000 0000 .0000 .0000 .0() 0 )000 ,I)

oLO10 .0000 00)0 0000 .0000 .0000 0000111) I I)J()

B Matrix for Five Control Surfaces

.0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000

-.5220 -.3790 .7140 .7140 .0000
-.3950 -.7740 -4.8620 -4.8620 .0000
.1390 .2750 -.1510 -.1510 .0000

.0010 -.0020 .0000 .0000 .1020

.1210 -.2830 1.1590 -1.5190 .1310

.0920 -.1820 .0030 -.0030 -.2070

[ it i v W q 3 p r I(.\.15)
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Table A.9. TF/TA Matrices - 25% Loss of Effectiveness Ruider

(11000 0600 .0000 .0000 1.0000 .001)0 jli1 10000
0000 .0000 .)000 0000 .6000 .0000 1. 0 UI0U)141}

- 2 171D 0000 - 03-10 .0050 - 13.8570 .10)0 0)ootj ;1 ! '

- 144o , uOO0 -. 01,10 -3.1400 1004.9000 .00J .01101) it),1f)

ifl)0 0t)10 .0000 -. 0200 -1.A190 .000) outl)0 IIU

'000 01320 .0000 .0000 .0000 -. 2300 .0110 - 1 000
0000 .0000 .0000 .0000 .0000 -65.97,0 -5.359{} -1 ,1910
o000 0Ofo .0000 '000 .0000 6.1230 -. 0390 - 1.2160

li) 0000 0000 )00000 .0100 .0)000 ilu) i)0il)

000 0000 0000 000 0)000 .10000 11100) 1'00 1 '06

-- 121J -- 141 2520 1M50 .25-0 .1650 1010 1'-) 10 '!,ii

- r,0 - ! 6 90 -1 7250 -1,1140 -1.7250 -1,1140 -1 I1 ;I -1 I '''it)

2 150 210 - o520 - 0-1010 - u520 - u4O - )l(;I) - J;' uil

'!!Iiii -0 Ii) i )} I0 )1) JO0 0o ii l)l (mo o 0110 ) ;,111 ''il

>I11 - 21.0 4150 3680 - .4150 - 3680 2070 - 2,)7-1 :.1

i !000 111) .)0l0 U 00 1J 00) -I;. 123 ) ,! 3011 1.

I 10)01 ) .t 0 1 1.0000 .0138 .0000 .0000 .0000 10i 10
0 0000 0000 O00 .0000 .0000 1,0000 .0000 0000

C 1 0000 0000 0000 .0060 .0000 .0000 .0000 01o00

0000 1.0000 0000 .0000 .0000 .0000 0000 00)

0000 0000 .0000 .0000 .0000 .0000 0000 1 )0)10 

B Matrix for Five Control Surfaces

F .0000 .0000 .0000 .)000 .000

.0000 .0000 .0000 .000U .0000

-. 3240 -. 3240 .6110 .6110 .0000
-. 6690 -. 6690 -4.1550 -4.1550 .0000

.2350 .2350 -. 1280 -. 1280 .0000

.0010 -. 0010 .0000 .0000 .0010

.2300 -. 2300 .9900 -. 9900 .27(60

.0000 .0000 -6.1230 .0390 1.2160

x [ IV r1)/ T A. TV
r ' r eT6e u

A. 10 )
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Appendix B. lRA4 MfODEL GENERA TJO.

1.z INTRODUCTON

Thiis appendlix contains a summary of the SARNIA model conversion tvchii 1 ~;w0(:I

telby liokor and Keviczky and the MATRITT, macro used to accomnpiRAS':n

1' uttiation for all the plant matres ( 1. 11). Detailed mathematical cupnit V

ppvdure is contained in reference ( 1).

B3.2 ARAAf. ODEL

Fhe method used to generate the ARNMA model representation from a statewspace

model representation is based upon using constructibiliqt invari ants. T his netu Ao S F i-

niat Cs some of the problems associated with the observabhility v max tchn iii n o GoV.m

-tate transition matrix is singular. Rcal that the state-space mepresomitat1 of di i-

Knmous tdne system is expressed by

x -Ax(t)+Bu(t)

Y(t) =CX(t) !

w mire

A.= the continuous time plant matrix (ri x n)

B[= the continuous time control matrix (n- x m) with the rank or B rn

( ' the continuous time output niaLrix (I x n)

r -the state variable vector with n states

!I th control input vector with in inputs

)Ithe out put vector with I ou tpu ts



The state-space matrices of Equation B.I and Equation B.2 are discretized for a

given sampling time T and expressed in the discrete time domain by

±(T) = Fx(T)+Gu(T) (.3)

y(T) = Hx(T) B.)

w h c re

F the discrete plant matrix (n x n)

G= the discrete control matrix (1n x m) with the rank = m

H the discrete output matrix (I x n)

x the state variable vector with n states

u = the control input vector with m inputs

y the output vector with I outputs

For this technique, the discrete time representation given in Equations B.3 and BI

must have no poles at the origin. i.e. the inverse matrix F-1 exists. The constructibilitv

matrix C, is defined as

II F-

HF-2

C.= HF - 3  (B.5)

I F- n

and must have rank Co = n.

A new matrix, TT, is formed from the linearly independent rows of C0 in Equia-

tion B.5 (where each block HF-' is I x n). The first row of the new matrix is the 11rst

row of C,. The second row of T is the next linearly independent row of C,. The process

continues until the matrix TT has full rank n.
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The transformation matrix T is formed by rearranging the rows of matrix TT into

the following form

hiF - 1

hj F-V'
T = : (1.(i)

hF-1

hl F - v '

where hi is the ith row of the H matrix.

For I < I < 1, the ith constructibility index V, is defined as the smallest positive integer

such that hiF - V1' is a linear combination of the rows before it. Then the constriictibilitv

indices satisfy the relation

V + V2 +.+ V = n (.7)

and are arranged in descending order

VI 2! V2 2! V3 > -... V (B.3)

If Equation B.8 is not satisfied, permutate the output matrix, H, to satisfy the relationship

of the constructibility indices.

Then the following matrices are defined:

R = T - ' (B.9)

ff = HR (B. 10)

P = R-FR (13.11)

G= R-G (B.12)
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A reduced order ARMA model is used where, instead of having n coefficients, oinv

. n/ u (rounded to the largest integer) are needed. The .4, coefficients of the ARNI:A

model are calculated from the relationship

Ai = -HSp,(k - i) (B.13)

wherei = 1......(k - i) is a delay operator, and

(k- 1) 0 ... 0

(k-2) 0 ... 0

(k -V) 0 ... 0

o (k - i) ... 0

o (k-2) ... 0
Sp,(k) = C nx  (B.1I)

o (k- V') ... 0

o 0 ... (k - I)

0 0 ... (k- 2)

o o ... (k- V)

As an example, to find the A1 coefficients using Equation B.13 and Equation 13.1-,

the Sp,(k) matrix elements associated with the (k-i) terms in Equation B.14 would be set

equal to 1 and all other matrix elements equal to zero. The A2 coefficients would require

Sp,(k) matrix elements associated with the (k-2) terms in Equation B.14 be set equal to 1

and all other matrix elements equal to zero, etc.

The Bi coefficients of the ARMA model are calculated from the relationship

Bi = fSq,(k - i)OG (.15)
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where,

N

Sq, = S(B.16)
z=1

where

S = block diagonal [S 1, Sj,..., S] (B.17)

and Sj is the block-diagonal Toeplitz matrix given by

0 ... 0

Sj 1 ... ': E R )x v) (B. 18)

0 1 0

forj=1,....

B. 3 A RMA JIPLEMENTA TION

The implementation of the theory presented in the previous section is executed ill

MATRIXx using a modification of a macro developed by Velez in his thesis (11). For this

design,

V 1  2

V2 = 2

V3 = 2

V4 = I

5= 1
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SP, (B3.19)
00 10 0

00 00 0

00 01 0

00 00 1

5 P2 =(B.20)

00 00 0

00 10 0

00 00 0

0q1 0 1 0 0 0 0 =
0 (.1

0 010 0100 0

0 00 10010 0
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0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0
Sq2 =Sl (B.22)

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -

B. 3. 1 Af 4TR/,)( 4R.IA .1acro The following NIATRIX.v macro 1isting can be d1i-

rectly typed into MATRIXx and implemented by using tihe command --EXEC( 'filenanm')".

IIENSURLE fHAT A/C MATRICES FOR DESIRED FLIGHT CONDITION HAVE BEEN
//OADED IN MATRIXX.
//THIS PROGRAM WAS MODIFIED FROM VELEZ'S AND HAMMOND'S THESES AND IS
//WRITTEN FOR AN 8 STATE PLANT WITH 5 OUTPUTS

N=8; //DEFINE THE NUMBER OF STATES
L=5; //INDICATE NUMBER OF OUTPUTS

//THE C MATRIX FOR THIS MODEL HAS
CDUM=C([I 2 3 4 5],:); //10 OUTS, 5 OF WHICH ARE COMMANDED

//FORM THE S PLANE SYSTEM MATRIX

SDUM=<A,B;CDUM,O*EYE(5)>; //CONTINUOUS SYSTEM MATRIX

SD=DISC(SDUM,N,.025); //DISCRETIZES THE SYSTEM MATRIX
//TSAMP=.025

[F G H D]=SPLIT(SD,N); //SEPARATES DISCRETE MATRICES
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//FORM CONSTRUCTABILITY MATRIX

J=N-L; //J+l IS THE LARGEST POSSIBLE VALUE

//OF INDEX VI
//THE REMAINING SECTIONS OF THE CODE
//ARE WRITTEN FOR THE UNDER THE
//ASSUMPTION THAT J>O.

CO=<H*INV(F)>; //THIS LINE FORMS THE COMPLETE
//CONSTRUCTABILITY MATRIX IF J=O.

Fy2 1=2:J+l ... //ONLY J*L+1 ROWS OF CO ARE NEEDED

CO=<CO;H*INV(F)**I>;... //TO SELECT BASIS VECTORS. THIS
END; //FORMS THE REMAINING BLOCKS OF CO

RCO=RANK(CO) //MAKE SURE THAT CO HAS RANK N

//FORM TEMPORARY TRANSFORMATION MATRIX

KEEP=l; //TRACKS WHICH ROWS OF CO WHICH GO IN

CR=O; //TEMP INITIALIZES COUNTER
TT=<CO(1.:)>; //INITIALIZES TEMPORARY VECTOR 1ST ROW
TEMP=TT; //INITIALIZES TEMPORARY VECTOR

//LOOP FOR GENERATING

//TEMPORARY TRANSFORMATION MATRIX
FOR I=2:J*L+1,... //LOOK THROUGH THE ROWS OF CO FOR

TEMP=<TT;CO(I,:)>;... //THE 1ST N LINEARLY INDEPENDENT ROWS.
RN=RANK(TEMP);... //THIS ENSURES THAT EACH ROW OF THE

IF RN=I-CR THEN TT=TEMP;...//H MATRIX IS REPRESENTED.
KEEPERS=<KEEP;I>;... //KEEP" LISTS ROWS OF CO WHICH ARE

KEEP=KEEPERS;... //INCLUDED IN "TEMP".
ELSEIF RN<I-CR THEN TEMP=TT;...

CR=CR+1;...

END ....
END;

RN //MAKE SURE THAT RANK OF TEMP IS N
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//CALCULATE INDICES

V=O*ONES(L,1); I/INITIALIZES INDEX MATRIX

FOR I=1:L,...

K=KEEP(I ,1); ...

IF K=I THEN V(I,1)=l; ... I/ROWS 1-L OF CO MUST BE LINEARLY
END; ... I/INDEPENDENT FOR THE L INDICES TO

END; I/EACH EQUAL AT LEAST 1.

FOR I=L+1:N .... I/THIS LOOP IS NOT NEEDED FOR J=O
K=KEEPCI,1); ... I/CASE.
IF K<(J-1)*L+l THEN V(K-L,1)=V(K-L,1)+1; ...
ELSEIF K<J*L+l THEN V(K-(J-1)*L)=V(K-(J-1)*L>+l; ...

END; ...

IF K=J*L+1 THEN V(1,1)=V(1,1)+l; ...
END;- /. /PLEASE NOTE THAT ADDITIONAL LOOPS

END; I/MUST BE ADDED FOR CASE WHERE J>3
I/OR SUBTRACTED WHEN J<3.

KEEP /IL.NSLJRE THAT ALL L INDICES AT LEAST
I/ARE EQUAL 1, THEIR SUM IS N, AND

V I/THEY ARRANGED IN DESCENDING ORDER.
I/OTHERWISE, THE H MATRIX MUST BE
I/RESTRUCTURED.

I/THE FOLLOWING PORTION OF THIS MACRO WORKS FOR THE 5 INDICES HAVING
I/VALUES OF 2,2,2,1,1 RESPECTIVELY. OTHERWISE, THE "T" MATRIX AND

lISP'S AND SQ MAY HAVE A DIFFERENT FORM. REFER TO BOKOR AND
//KEVICZKY ARTTCLF~ FOR 5DF(7ITIC GUTDANCE.

T=<TEMP(1, :) ;TEMP(6, :) ;TEMP(2,:) ;TEMP(7, :) ;TEMP(3, :) ;TEMP(8,:); ..
TEMP(4,:);TEMP(5,:)>; //ROWS OF TEMP ARE ARRANGED IN ORDER

//OF CALCULATED INDICES

IIH(L,:)*F**l;... .HL:*F*L
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R=INV(T);

HBAR=H*R;

FBAR=INV(R)*F*R;

GBAR=INV(R)*G;

SQ1=EYE(8); //SQl=S**O

SQ2=<O 0 0 0 0 0 0 0; ... //SQi IS AN NXN BLOCK DIAGONAL MATRIX
I 0 0 0 0 0 0 0; ... //WITH L ENTRIES DIMENSIONED ViXVi
0 0 0 0 0 0 0 0: ... //HAVING I'S ON THE LOWER SUB-
0 0 1 0 0 0 0 0; ... //DIAGONAL (A VERSION OF A TOE7LITZ
0 0 0 0 0 0 0 0; ... //MATRIX). SQi=S**(i-1)

0 0 0 0 1 0 0 0;...
0o0 0 0 0 0 0 0;... //S=BLOCK DIAGONAL{TOEPLITZ(V1XV1),
0 a a 0 0 0 0 0>; // .... TOEPLITZ(VLXVL)}.

//THE NUMBER OF ARMA COEFFICIENTS NEEDED FOR A REDUCED ORDER MODEL
//IS APPROXIMATELY K=N/L (ROUND UP TO NEXT INTEGER FOR ANY REMAINDER)

//FOR THE N=8 L=S CASE, 2 ARMA COEFF'S AND 2 SP MATRICES ARE NEEDED.

//FOR THE K=l CASE

SP1=<1 0 0 0 0; ... //THE NXL SP MATRICES HAVE THE
0o0 0 0 0;... //SAME FORM. THE FIRST COLUMN IS
0 1 0 0 0;... //[K-1;...;K-V1;O*(V2,1);...;0*(VL,1)1
0o0 0 0 0;... //THE SECOND COL ENTRIES START ON THE
0 0 1 0 0; ... //ROW UNDER THE FIRST COL ENTRIES
0 0 0 0 0;... //[O*(V1,1);K-1 .... ;K-V2;0*(V3,1);...]
o 0 0 1 0; ... //TIllIS TREND IS CONTINUED FOR ALL L
0 0 0 0 1>; I/COLUMNS.

//AND FOR THE K=2 CASE

SP2=<O 0 0 0 0; ... //THE SP MATRICES HAVE A TIME

1 0 0 0 0; ... //SHIFT OPERATOR (K-i).
o 0 0 0 0;...
o 1 0 0 0;...
0 0 0 0 0;...
0 0 1 0 0;...

0 0 0 0 0;...

0 0 0 0 0>;

//NOW ALL THE PRELIMINARY VARIABLES HAVE BEEN DETERMINED AND
//CALCULATION OF THE ARMA COEFFICIENTS CAN PROCEED.
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BIARMA=HBAR*SQ1*GBAR; //Bl COEFFICIENT
B2ARMA=HBAR*SQ2*GBAR; //B2 COEFFICIENT

AlARMA=-HBAR*SPl; //Al COEFFICIENT

A2ARMA=-HBAR*SP2; //A2 COEFFICIENT

GO=INV(EYE(5)+A1ARMA+A2ARMA)*(BAR4A+B2ARMA);

CLEAR CDUM SDUM
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L'..; OE-rr'SSZVE .' IOVIVG AVERAGE .4,,DEL'

Table B.1. ACM Entry ARMA Model - No Failures

-1.9766D - 00 0.0000D - 00 2.0200D - 00 0.OOOOD - 00 0.0000D - 00
0.0000D -00 -1.9877D -00 0.0000D -00 -7.0718D -06 -8.7077D -0.5

= 3.0638D - 03 0.0000D - 00 -1.9857D - 00 0.OOOOD - 00 0.0000D - 00
O.OOOOD -00 -27.8260D -00 0.OOOOD -00 -9.7496D -01 -7.0019D -01

0.0000D -00 5.7549D -01 0.0000D -00 -6.0038D -04 -9.7326D -01

9.7666D - 01 0.0000D -00 -2.0015D -00 0.0000D -00 0.ooooD - 00
0.OOOOD - 00 9.8983D -01 0.0000D - 00 0.0000D - )0 0.OOOOD - 00

A42 -3.0627D - 03 0.OOOOD -00 9.8814D - 01 0.0000D -00 OO.OoD - 00
0.OOOOD -00 27.7994D -00 0.0000D -00 0.0000D -00 o0.0000D -00
0.0000D - 00 -6.3593D - 01 0.OOOOD - 00 0.0000D - 00 ).tnnoD - o1)

S7.3484D - 04 7.3484D - 04 5 8075D - 013 5.S075D - (j.1 tJ.0o D - un 1
-6.7897D - 06 6.7897D - 06 -6.3897D - 06 6.3897D - 06 3.3131D - (15

B, 3.1534D - 05 3.1534D -05 -2.1788D - 05 -2.1788D -05 0.0000D - 00
2.4002D - 05 -2.4002D -05 1.6415D - 14 -1.615D- 04 .4422D -05
1.2078D -03 -1.2078D -03 1. 6 ,-3, 04 -1.7236D -01 -1 352GD - 03

-7.7184D -04 -7.7184D -04 -5.5416D -03 -5.5416D -03 uU(iuOD -00
-2.1695D -05 2.1695D -05 1.3484D -05 -1.3484D -05 3.2708D -06

B2  = 3.3706D - 05 3.3706D - 05 -4.1380D - 06 -4.1380D - 06 j.000D - 00
-6.0930D - 04 6.0930D - 04 3.7870D - 0. -3.78"70D - 04 9.1 S60 D - 05

1.3938D - 05 -1.3938D -05 -8.6630D - o6 8.6630D - 01) -2. 111.4D -0(I

OT = [.41(1,1),A1(1,2).....41(5, 5), .42(1,1) ...... 42(5,5),

B,( 1, 1). B1 (5, 5), B 2(1, 1) .... B 2(5. 5)]
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fable B.2. ACM Entry ARMA Model - 30% Loss of Effectiveness Left TrailiIng FJI,,

F -1.9278D - 00 0.0000D - 00 7.2958D - 01 0.0000D - 00 o.0L0D - IM1
0.0000D -00 -1.9879D - 00 0.0000D - 00 -1.4482D - 05 1. 1316D - 04

. 1  = -1.3075D - 02 0.0000D - 00 -2.0334D - 00 0.0000D - 00 0.0000D - 00

0.0000D - 00 -21.4570D - 00 0.0000D -00 -9.8068D - 01 -5.4042D - 01
0.0000D - 00 5.6254D - 0.0000D - 00 -5.9587D - 04 -9.7238D -01

9.2777D - 01 0.0000D - 00 -6.7154D - 01 0.0000D - 00 0.0000D - 00
0.0000D - 00 9.8145D - 01 0.0000D - 00 0.0000D - 00 0.0000D - 00

42  = 1.3073D - 02 0.0000D - 00 1.0229D - 00 0.0000D - 00 0.0000D - 00
0.0000D-00 21.4414D-00 0.0000D-00 0.0000D-00 0.0000D-00
0.0000D - 00 -6.2829D -01 n.00001 D-00 0.0000D - 00 .OOOD - 00

F .487.5D - 04 8.4975D - 04 2.9229D - 03 3.9602D - 03 0.o0o00D - oil'
-1.4104D - 05 1.3849D - 05 2.4955D - 06 -4.3548D - 06 9.4794 D - 1r

B, 3.1696D - 05 3.1696D - 05 -1.2768D - 05 -2.1488D - 05 0.O ooD - n0

2.5335D - 05 -2.40911D - 05 9.5873D -05 -1.640q1D - 04 3.6092D - 05
1.2172D -03 -1.1924D -03 1.4627D -04 -2.4366D -04 1.3668D -03

-1.0088D - 03 -1.0088D -03 -2.6349D -03 -3.5456D -03 0.000D -00
- 1.3970D - 05 1.3718D - 05 -. ,t62 - 65 :.05 '1 - 0.9887D - 05

B2 1.8899D -05 1.8899D -05 -50412D-05 -7.2305D -05 0.0000D -00
-3.0520D -04 2.9969D -04 5.4302D -05 -9.4750D -05 -8.7139D -04

8.9433D -06 -8.7818D-06 -1.5912D-06 2.7765D-06 2.5534 D - j
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Table B.3. ACM Entry ARMA Model - 50% Loss of Effectiveness Left Canard

-1.9488D - 00 0.0000D - 00 5.3735D -01 0.OOOOD - 00 0.0000D - Hi)

0.OOOOD -00 -1.9845D -00 0.0000D -00 -1.0175D -05 -10S880D -05
. -4.4830D - 02 0.OOOOD -00 -2.0113D -00 0.OOOOD - 00 HOHOOD - on

0.0000D -00 -24.S440D -00 0.0000D -00 -9.7764D -01 -6' 2532D - dl
0.0000D - 00 5.7566D -01 0.OOOOD -00 -6.0059D - 0. -9 7200D - 01

9.4S85D - 01 0.0OOD - 00 -4.9634D - ui 0.0000D no iHi )0D - ' 1
0.OOOOD - 00 9.8666D - 01 0000OD - 00 0.OOOOD-00 o.oIL)D -

12 4.4820D - 03 o.ooooD + 00 1.007D -00 0.0000D- to u two0D - u)
0O0000D - 00 24.8260D - 00 0.0000D - 00 0.0000D - O o.o00D - |

L 0.0000D - 00 -6.3624D -01 0.0000D - 00 0.0000D - 00 o.ooo000D - J
-4.0629D - 03 -3,1970D - 03 5.9859D - 03 5.9859D - 03 .0000D - no1
-7.0321D - 06 -1.0579D - 05 3.9925D - 06 -3.9925D - 06 4.3437D - 05

[3 1.1191D-05 2.2381D-05 -2.1786D-05 -2.1786D-05 0.OOOOD-00
1.1082D -05 -2.1809D -05 1.6413D -04 -1.6413D -04 3.41969 - 05
5.9619D -04 -1.2180D -03 1.9454D -04 -1.9454D -04 -1.3671D -03

.3 7323D - 03 2.7869D - 03 -5.1721D 03 -5.4734D - 03 j.oooD - o1
-7.0028D - 06 3.9010D - 05 3.9740D - 06 -3.97-10D - Ot -3.291 D - 06

1 *2 9058D - 05 3,6021D - 05 -4.8049D -05 -4.80.9D -05 n 0o0D - on
-1.7621D -04 9.8158D -04 9.9993D -05 -9.9993D -05 - 1.5826D -0,

1.5157D - 06 -2.5156D - 05 -2.5626D - 06 2.5626D - 6 1. o57D - tlo
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Table BA. ACM Entry ARMA Model - 25% Loss of Effectiveness Rudder

-1.9684D + 00 0.OOOOD + 00 4.3587D - 01 0.0000D + 0 0 1()0D + 1fl
0.0000D +00 -1.9900D - 00 0.0000D +00 -5.2378D - )6 -1 2"7) -. i

.11 -9.8466D -03 0.OOOOD + 00 -1.9924D + 00 0.0000D + i) I;u 1)- H')
0.0000D +00 -2.7779D + 01 0.0000D + 00 -9.7500D - 11 - ) .) -

0.0000D +00 6.6970D -01 0.0000D + 00 -6.715 1 D - H 711' - -

9.6838D - 01 0.0000D + 00 -4.1059D - 01 0.0000D + 00 ().OU)D -4- m1

0.0000D + 00 9.9189D - 01 o.OOOOD + 00 0.0000D + 00 0 (jIO0D + oU

.42 9.8443D - 03 0.OOOOD + 00 9.8452D - 01 0.0000D + 00 0.0000D + 00
0.OOOOD + 00 2.7750D + 01 o.i3OOOD + 00 0.0000D + 00 0.0000D -,- 00
0.0000D + 00 -7.1991D - 01 0.0000D + 00 0.0000D + 00 0.0000D ci

7.3170D - 04 7.3170D - 04 6.0040D - 03 6.0040D - 03 ),000)D + N)

8.2887D -07 -8.2887D -07 6.4352D -04 -1.4215D - t5 -1 292;D -
13 3.1701D -05 3.1701D -05 -2.1801D -05 -2.1801 D -05 1),,,[-IN ;

2.3351D - 05 -2.3351D - 05 1.3837D - 04 -I 637,1D - ui 1i7lD -,
-6.1414D -07 6.1414 D -07 -5.10,26D -02 6.756)5D - i),1 01]171) -,_

-7.4570D - 04 -7.4570D - 04 -5.8168D - 03 -5.8168D - oI3 (), W;1) 1 /D '

8.2662D -07 -8.2662D -07 6.4393D -04 -1.4204D -05 -1 2935D - i
B2  2.4128D - 05 2.4128D - 05 -8.0847D - 05 -8.0847D - o5 0.oo0OD + )

2.3126D -05 -2.3126D -05 1.8015D -02 -3.9739D -04 -3,C1S8D - 1

-5.9996D - 07 5.9996D - 07 -4.6736D -04 1.0310D - 05 9.3883D - 05
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Table B.5. ACM Exit ARMA Model - No Failures

-19837D -00 -6.5693D - 01 2.2386D - 00 1.1610D - 03 - 1 ,660D - 02 n

2.6268D -07 -1.9658D - 00 -1.1845D - 03 -2.5388D - 05 4 3827D - N
.4 = 4.4540D - 04 1.4892D - 04 -1.9772D - 00 -1.3834D - o.I -t.'16D - o(

9.3315D - 08 -2.0952D - 00 1.2440D - 03 -9.9831D - 01 -6.0IlIOD - o2

-5.2666D -09 1.1718D - 01 -6.6512D - 05 -9.1823D - 05 -9.9 58D - 01

9.8377D - 01 6.5725D - 01 -2.2302D - 00 0.0000D - 00 0OOOOD - oo

-2.6062D -07 9.6796D - 01 1.1476D - 03 0.0000D - 00 0.ooooD - 90
42 -4.4191D - 04 -1.4888D -04 9.7758D -01 0.0000D - 00 0.0000D - 00

-9.2583D - 08 2.0986D - 00 1,2332D - 03 0.0000D - 00 0.0000D - 00

5.2253D -09 -1.1514D -Oi -6.8092D - 05 0.0000D - 00 0.0000D -00

-2.4336D - 03 -2.4560D - 03 -2.3306D - 03 -2.3347D - 03 6.6196D - 07
1.5424D -05 -1.8937D -05 2.0378D -06 -2.0392D - u3 1.7525D -05

B, 50031D -06 4.8478D -06 -1.8059D -06 -I.8059D -06 1.5819D - 13
5.6635D -06 -1.2379D - 05 1.9698D - 05 -1.9698D - 05 64000D - o6

3.3248D -04 -3.0209D - 04 -3.3599D - 05 3.3599D - 05 -3.2566D - 04

2.2530D - 03 2.3031D - 03 2.4219D - 03 2.4033D - 03 -2.2257D - 06
-1.8931D -05 1.5462D - 05 1.6683D - 05 -1.6687D - 05 -2.2764D - 06

B2  3.9268D -06 3.7560D - 06 -2.8621D - 06 -2.8588D -06 6.55,1D - 10

-4.1049D -05 3.3518D - 05 3.6174D - 05 -3.6176D - 05 -4.935,D - 06
2.2522D -06 -1.8390D -06 -1.9847D -06 1.9848D -06 2.7078D -07
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Table B.6. TF/TA ARMA Model - No Failures

-3.6847D - 00 0.OO00D - 00 -51.1370D - 00 0.0000D -00 0.0000D - 00
0.0000D -00 -1.9519D -00 0.0000D -00 -2.8733D - 05 1.0815D -01

, 5.9207D - 02 0.0000D - 00 -1.8445D - 01 0.0000D - 00 0.0000D - no
0.0000D -00 -59.2300D -00 0.0000D -00 -9.5265D -01 -150IiD -00
o.OOOOD -00 1.4404D - 00 0.0000D - 00 -1.395.D - 03 -9-24.17D - Ol

2.6832D -00 0.0000D - 00 49.7810D - 00 0.0000D - 00 o.ooooD - o
0.0000D - 00 9.5785D - 01 0.0000D - 00 0.0000D - 00 o.ooooD - Co

.A2 -5.9154D - 02 0.0000D - 00 -7.6791D -01 0.000OD - 00 0.0000D -00
0.0000D - 00 59.0480D - 00 0.010D -0 0.OOD - 00 0.0000D - 00
0.0000D -00 -1.6383D - 00 0.0000D - 00 0.0000D - 00 0.0000D -00

S1.0618D -02 -1.0618D -02 1.5259D - 02 1.5259D - 02 0.0000D - 00
-1.8033D - 05 1.8033D -05 -4.1580D - 06 9.1373D - 06 1.0194D - 04

B = 7.3451D -05 7.3451D -05 -4.0607D -05 -4.0607D - 05 0.0000D - 00
7.1020D -05 -7.1020D -05 2,9993D -04 -2.9997D -04 1.0971D - 04

3.9102D -03 -3.9102D -03 1.0870D - 04 -1.0819D - 04 -4.4117D - 03j

2.0494D -02 2.0494D -02 -3.6496f) - 02 -3.6496D - 02 0.no0onD - on
-7.5883D -05 7.5883D -05 1.0468D -05 - 1.5268D -05 1.2956D -05

B2  -4.2691D - 04 -4.2691D -04 7.9098D - 04 7.9098D - 04 0.0000D - 00
-4.6779D -03 4.6779D -03 6.4531D -04 -9.4120D - 04 7.9867D -04

1.2979D -04 -1.2979D -04 -1.7904D -05 2.6114D -05 -2.2160D -05
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Table B.7. TF/TA ARMA Model - 30% Loss of Effectiveness Left Trailing Edge

-1.9289D - 00 O.0000D - 00 2.4122D - 00 0.0000D - 00 0.0000D - 00
0.0000D - 00 -1.9561D - 00 0.0000D - 00 -- 2.5617D - 05 1.3755D - 05

A 7.2371D - 03 0.0000D - 00 -1.9644D - 00 0.OOOOD + 00 0.0000D - 00
0.0000D -00 57.5160D -00 0.0000D - 00 -9.5402D - 01 -1.4610D - 00
0.0000D - 00 1.6261D - 00 0.0000D - 00 -1.5406D - 03 -9.2005D - 01

9.2900D - 01 0.0000D - 00 -2.3558D - 00 0.0000D - 00 ..JoOOD - 00
0.0000D - 00 9.6193D - 01 0.0000D - 00 0.0000D - 00 0.000D - no

A2 -7.2311D - 03 0.0000D - 00 9.7021D - 01 0.0000D - 00 0.O000D - 00
0.0000D -00 57.7350D - 00 0.OOOOD -00 0.0000D - 00 0O.OO00D - 00
0.0000D -00 -1.8209D -00 0.0000D -00 0.0000D -00 0.0000D -00

-8.8814D -03 -8.8814D - 03 1.0201D - 02 1.3521D - 02 0.0000D - 00
-2.2384D - 05 2.2384D - 05 2.2204D - 06 -3.6512D - 06 1.0626D - 04

B1  7.2684D - 05 7.2684D -05 -2.3547D - 05 -3.9662D - 05 0.0000D - 00
7.0004D -05 -7.0004D -05 1.7183D -04 -2.9585D - 04 1.1159D - 04
3.8607D - 03 -3.8607D - 03 4.3589D - 05 -8.8733D - 05 -4.3508D - 03

8.2180D - 03 8.2180D - 03 -9.3663D - 03 -1.2370D - 02 0.0000D - 00
-7.0757D - 05 7.0757D - 05 2.1920D -06 -3.6047D - 06 7.5178D - 06

132 7.4294D - 06 7.4294D - 06 5.0055D - 05 5.7807D - 05 0.OOOOD - 00
-4.2185D -03 4.2185D -03 1.3069D -04 -2.1491D -04 4.4821D - 04

1.3394D -04 -1.3394D - 04 -4.1495D -06 6.8238D - 06 -1.1231D-05
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Table B.8. TF/TA ARMA Model - 50% Loss of Effectiveness Left Canard

-1.9180D - 00 0.0000D - 00 2.4247D - 00 0.0000D - 00 0.0000D - 00
0.0000D - 00 -1.9713D -00 0.0000D -00 -1.2614D -05 -5.2084D -04

A1  4.7557D - 03 0.0000D -00 -1.9509D -00 0.0000D - 00 0.0000D -00
0.0000D - 00 -83.6540D -00 0.0000D -00 -9.3315D - 01 -2.1289D -00

0.OOOOD - 00 2.0604D - 00 0.0000D - 00 -1.9038D - 03 -9.0350D -01

9.1806D - 01 0.0000D - 00 -2.3596D -00 0.0000D - 00 o.OOOOD - 00
0.0000D - 00 9.7736D - 01 0.0000D - 00 0.0000D - 00 (Ofl)OD - o

A2 -4.7512D -03 0.0000D -00 9.5472D -01 0.0000D -00 o.0110)D - 1o

0OOOD - 00 83.3500D - 00 .(10000D - 00 0.0000D - 00 i).OO00D - 00
0.0000D - 00 -2.2661D - 00 0.0000D -00 0.0000D -00 0.0000D - 00

-1.3180D - 02 -9.7372D -03 1.6645D - 02 1.6645D -02 0.0000D -00
-3.0171D - 06 5.2788D -06 3.0283D -06 -3.0283D - 06 1.1496D - 04

B, 4.2701D - 05 8.4482D - 05 -4.6574D - 05 -4.6574D -05 0.0000D -00

3.6503D - 05 -8.5166D -05 3.4423D -04 -3.4423D -04 1.2590D -041
2.2580D - 03 -4.4667D -03 6.4002D - 05 -6.4002D - 05 -5.07,9D - 03

1.2025D - 02 8.7762D - 03 -1.4993D -02 - 1.4993D - 02 o.mlo(oD - o)1

-5.2586D - 05 1.0441D -04 2.9923D -06 -2.9923D-06 [.i) -(;D 0.5
B2  -2.01516D - 05 3.7108D -05 3.2466D - 05 3.2466D - 05 0.0000D - 00

-4.4845D - 03 8.9044D -03 2.5519D -04 -2.5519D -0,1 1. 1153D -03
1.2193D -04 -2.4210D -04 -6.9381D -06 6.9381D -06 - .8181D - 05
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Table B.9. TF/TA ARMA Model - 25% Loss of Effectiveness Rudder

S-1.9129D + 00 0.0000D + 00 1.7108D + 00 0.0000D + 00 0.0000D + 00
0.0000D + 00 -1.9828D + 00 0.0000D + 00 -5.6997D - 06 -5.6667D - 04

.41  -1.2382D - 02 O.OOOOD + 00 -1.9545D + 00 0-0000D + 00 0.OOOOD + 00
0.0000D + 00 -6.6691D + 01 0.0000D + 00 -9.4670D - 01 -1.6908D + 00
0.0000D + 00 2.3355D + 00 0.OOOOD + 00 -2.0471D - 03 -9.0518D - 01

9.1298D - 01 0.0000D + 00 -1.6414D + 00 0.OOOOD + 00 0.OOOOD + 00

O.QOQOD + 00 9.8717D - 01 0.OOOOD + 00 0.OOOOD + 00 0.OOOOD + 00

. 1.2371D - 02 0.OOOOD + 00 9.4454D -01 0.0000D + 00 0.OOOOD + 00
0.OOOOD + 00 6.6475D + 01 0.OOOOD + 00 0.0000D + 00 0.OOOOD + 00

0.OOOOD + 00 -2.4777D + 00 o.OOOOD + 00 0.0000D + 00 0.0000D + 00

-8.3608D - 03 -8.3608D - 03 1.3906D - 02 1.3906D - 02 woo0o0D + 10
2.5912D - 05 -2.5912D - 05 1.8944D -03 -1.6350D - 05 -3.4926D - 0,1

[ 7.2296D - 05 7.2296D - 05 -3.9150D - 05 -3.9150D - 05 o.0oOD + 0
6.8601D -05 -6.8601D -05 2.8136D -04 -2.9590D -04 8.5261D -05

-7.0756D -07 7.0756D -07 -1.5069D -01 9.7093D -04 2.9922D -02

7.5351D -03 7.5351D - 03 -1.2552D - 02 -1.2552D - 02 0.OOOOD + 00
-2.3735D - 05 2.3735D - 05 1.9152D - 03 -1.6463D - 05 -4.0302D - 04

B2  1.7408D - 04 1.7408D - 04 -2.0952D - 04 -2.0952D - 04 0.0000D + 00
-1.5983D -03 1.5983D -03 1.2897D -01 -1.1086D - 03 -2.7139D - 02

5.9572D - 05 -5.9572D - 05 -4.8068D - 03 4.1321D - 05 1.0115D - 03
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Appendix C. GAIN MATRICES AND STEP RESPONSE ROOTS

This Appendix contains the fixed-gain matrices for the no failure flight conditions

and the wt roots for the step response P1 controller design.
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Table C.1. Discrete PI Controller Gain Matrices - ACMENTRY

0.2750 2.6579 22.6167 0.9347 3.2537
0.2750 -2.6579 22.6167 -0.9347 -3.2537

K1 = 0.3989 -0.8640 -2.9566 2.4292 -0.1156
0.3939 0.8640 -2.9566 -2.4292 0.1156
0.0000 4.5235 0.0000 2.3043 -31.4078

0.0825 0.7974 6.7850 0.2804 0.9761
0.0825 -0.7974 6.7850 -0.2804 -0.9761

K2 0.1197 -0.2592 -0.8870 0.7288 -0.0347
0.1197 0.2592 -0.8870 -0.7288 0.0347
0.0000 1.3570 0.0000 0.6913 -1.0223

Table C.2. Discrete PI Controller Gain Matrices - ACMEXIT

-0.2877 1.8139 118.6223 5.9943 7.1919
-0.2728 -1.8515 112.4901 -6.1188 -7.3-11:3

K, = -0.8052 -1.4469 -99.0041 19.5178 0.7930
-0.7271 1.5019 -131.2262 -19.3359 -0.5747
-0.0326 3.8739 13.4352 7.9424 -24.4074

-0.0863 0.5442 35.5867 1.7983 2.1576
-0.0818 -0.5555 33.7470 -1.8356 -2.2024

K2 = -0.2416 -0.4341 -29.7012 5.8553 0.2379
-0.2181 0.4506 -39.3679 -5.8008 -0.1724
-0.0098 1.1622 4.0306 2.3827 -7.3222
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Table C.3. Discrete PI Controller Gain Matrices - TF/TA

0.1372 0.8360 15.3257 0.1741 0.8983
0.1549 -0.8360 15.9544 -0.1741 -0.8983

N1= 0.2707 -0.4656 9.5751 1.3828 0.0093
0.2608 0.4656 9.2249 -1.3828 -0.0093

-0.0155 1.4562 -0.5475 0.3824 -1.1936

0.0411 0.2508 4.5977 0.0522 0.2695
0.0465 -0.2508 4.7863 -0.0522 -0.2695

N 2 = 0.0812 -0.1397 2.8725 0.4148 0.0028
0.0782 0.1397 2.7675 -0.4148 -0.0028

-0.0046 0.4368 -0.1643 0.1147 -0.3581

Table C.4. Step Response PI Controller Gain Matrices - ACM Entry

5.4705 319.1986 145.8124 13.6863 39.6138
5.4705 -319.1986 145.8124 -13.6863 -39.6138

= 7.9174 -103.6666 -18.4503 143.8869 -7.2031

7.9174 103.6666 -18.4503 -143.8869 7.2031
0.0000 543.6125 0.0000 61.1122 13.4587

0.0028 8.4049 6.9320 -3.8274 106.9155
0.0028 -8.4049 6.9320 3.8274 -106.9155

K 2 = 0.0027 1.3925 7.9268 1.2441 -34.6890
0.0027 -1.3925 7.9268 -1.2441 34.6890
0.0000 24.4185 0.0000 -6.5138 180.3718 J
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Table C.5. Step Response EI Controller Gain Matrices - ACM Exit

-0.0058 0.2178 0.7526 -0.0085 0.0583
-0.0055 -0.2223 0.7138 0.0093 -0.0596

I = -0.0163 -0.1734 -0.6660 1.3210 -0.0077 1 i03

-0.0147 0.1801 -0.8705 -1.3197 0.0095
-0.0007 0.4651 0.085, -0.2897 -0.1137

-0.8029 5.4103 -94.2627 9.1723 85.0569
-0.7614 -4.9904 -82.6466 13.2984 -78.4553

K = -1.6540 9.2572 -183.2629 27.4612 -59.1481
-1.4359 -8.1117 -164.1554 20.5369 77.1570
-0.0909 7.0755 -17.6024 -3.6862 174.8087

Table C.6. Step Response PI Controller Gain Matrices - TF/TA

2.7661 100.5031 108.0596 4.5846 11.7829
3.1223 -100.5031 113.2086 -4.5846 -11.7829
5.4248 -55.8763 78.4220 80.0561 3.4695

-0.3102 175.4099 -4.4842 12.0628 3.7161

0.0411 0.2508 4.5977 0.0522 0.2695
0.0465 -0.2508 4.7863 -0.0522 -0.2695

K 2 = 0.0812 -0.1397 2.8725 0.4148 0.0028
0.0782 0.1397 2.7675 -0.4148 -0.0028

-0.0046 0.4368 -0.1643 0.1147 -0.3581
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Table C.7. wl plane roots for ACM Entry and TFTA for the step response method

ACM ENTRY TFTA

-4.70E - 6  -4.70E- 6

6.63E - 6  6.60E - 6

2.34E - 4  -2.45E - 4

-2.86E- 3 ± j2.10E - 3 -3.73E- 3 ± j3.1SE- "
-2.2034 ±j .7398 -2.3131
-2.8844 ±j 1.3522 -2.5416
-1.4674 ±j 4.8738 -8.1269
-9.9482 (5) -2.8595 ±j 8.5404
-1.1482 ±j 11.652 -9.9482 (5)
-45.617 ±1 27.997 -11.434

-55.799 ±j 31.105 -16.310
-56.411 ±j 31.192 -24.174 ±j 44.036
-56.522 ±) 31.006 -51.822
-57.916 ±j 31.327 -50.148 ±1 30.743

-55.239 ±j 29.878

-54.500 ±j 31.901
-57.237 ±j 31.264
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Appendix D. AD.4APTIVE ALGORITHM

The following source code for the adaptive algorithm is a FORTRAN subroutine

obtained from Hammond (4) which has to be linked to M.ATRI.XV. This algorithm

wiii require more d62au,. memory than found in MWATRIX., so the stack size must be

increased in the MATRI.x FORTRAN code. Specific instructions to increase the stack

size and link FORTRAN code can be found in the MATRIX. users manual. Also note

that the most recent versions of the IMSL Library and MATRIXx are used.

C ---------------------------------------------------------------
CI
CI THIS PROGRAM PROVIDES A RECURSIVE LEAST SQUARES ESTIMATION I

CI OF THE PARAMETERS FOR THE CRCA S X 5 A AND B COEFFICIENTS. I

CI LAST REVISION 11 SEPTEMBER 1989

CI THIS PROGRAM SHOULD BE LINKED TO VERSION 10.0 IMSL LIBRARY

CI AND WAS WRITTEN TO RUN ON MATRIXX VERSION 7.0.
CI SEE j-LE FOR.COM FOR THE APPROPRIATE COMMANDS

C--------------------------------------------------------------

SUBROUTINE UPDUSR (INFO,NUMBER,T,U,NU,X,XDOT,NX,Y,NY,
+ RP,IP)

DOUBLE PRECISION T,U(*),X(*),Y(*),XDOT(*),RP(*)

INTEGER INFO(4), IP(*)

CHARACTER*3 CNUM
C

INTEGER MAXNUM

PARAMETER (MAXNUM=l)
C

IF (NUMBER.GT.MAXNUM) THEN
INFO(1)=-2
WRITE(CNUM,111) NUMBER

ill FORMAT(13)

CALL MATWR(' 1)
CALL MATWR

+ ('SIMERROR: NOT ABLi TO UPDATE USER FUNCTION'//CNUM)

RETURN
ENDIF

CALL USRO (INFO,T,U,NU,X,XDOT,NXY,NY,RP,IP)
RETURN

END
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C --------------------------- -------------------------------------

CI START OF USER SUBROUTINE FOR THE RECURSIVE LEAST SQUARES

CI ESrIMATION AND GAIN MATRIX CALCULATIONS FOR THE ARMA
CI MODEL REPRESENTATION

C ----------------------------------------------------------------
SUBROUTINE USROI(INFO,T,U,NU,X,XDOT,NX,Y,NY,RP,IP)

DOUBLE PRECISION T,U(*),X(*),XDOT(*),Y(*),RP(*),
+ XNPLUS(100,5),GAMD1(5,5),XNPLUST(5,100),

+ XNPLUSPN(5,100),PN(100,100),GAMMA(5,5),

+ FORGET(5,S),PNXNPLUS(100,5),

+ GON(5,5),HINV(S,5),AlARMA(5,Spl i),

+ A2ARMA(5,5),BIARMA(S,5) ,B2ARMA(5,5 ,

+ Kl(5,5),K2(5,5),PND2(10,100),

+ THED2(5),THED4(100),
+ THETA(100),EYE5(5,5),GAMMAI(5,5),THED3(5),
+ SIGMA(5),GO(5,5),GODEN(5,5),PIT(S),

+ GODENI(5,5),PNPLUS(100,100),THETA1(100),

+ PXPLGAM(100,5),WK4REA(40),GnI(s,5)

INTEGER IP(*), INFO(4),N,IA,IDGT,IER,I,J,K,L

LOGICAL INIT,STATE,OUTPUT

INIT = INFO(2).NE.0

STATE = INFO(3).NE.O

OUTPUT= INFO(4).NE.0
IF (STATE .OR. (.NOT. OUTPUT)) THEN

GOTO 999
ENnTF

N=5 !PARAMETERS FOR IMSL LIBRARY

LDA=S !PARAMETERS FOR IMSL LIBRARY

LDAINV=5 !PARAMETERS FOR IMSL LIBRARY

C--------------------------------------------------------------

CI CHECK FOR INITIALIZATION OF THE THETA(O) AND P(O)
Cl-------------------------------------------------------------

TSTAR-=.050 !3 PERIODS
IF (TSTART.GT.T) THEN

OPEN(UNIT=102,FILE='THETANOM.RLS',STATUS='OLD')!THETA

DO I=1,100
READ(102,.)THETA(I)

END DO

CLOSE(102)

OPEN(UNIT=103,FILE='PONOM.RLS',STATUS='OLD') !PN

DO I=1,100

DO J=1,100

READ(103,*)PN(I,J)

END DO
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END DO
CLOSE(103)

GOTO 600 !INSURES FULLY POPULATED XNPLUS

ENDIF

C ------------------------------------------------------------

Ci CALCULATION OF NEW PARAMETER VECTOR I

C -----------------------------------------------------------
CALL MMULT1 (5,100,1,XNPLUST,THETA,THED2)

DO I=1,5

THED3(I) = U(I+10)-THED2(I)

END DO

CALL MMULT1 (100,5,1,PXPLGAM,THED3,THED4)

DO J=1,100

THETAI(J) = THETA(J) + THED4(J)

END DO

C ------------------------------------------------------------

CI UPDATE PARAMETER VECTOR FOR NEXT ITERATION I
C ------------------------------------------------------------

D3 lz1,i0O

THETA(I)=THETA1(I)

END DO
C -------------------------------------------------------------

Cl THE RECURSIVE UPDATE EQUATION STARTS HERE. I

C -------------------------------------------------------------

C -------------------------------------------------------------

CI UPDATE XNPLUS WITH THE OUTPUT FOR NEXT ITERATION I

C -------------------------------------------------------------

600 K=1 'COUNTER FOR UPDATE MATRIX

DO J=75,95,5

DO I=1,5

XNPLUS(J+I,K) = U(I+5) !U(I+5)--U(T-2)

END DO

K=K + 1

END DO
C --------------------------------------------------------------

K=1 !COUNTER FOR UPDATE MATRIX

DO J=50,70,5

DO I = 1,5

XNPLUS(J+I,K)=U(I) !U(I)--U(T-1)

END DO
K=K + 1

END DO
C . . . . . . . . . . . . . . . . . . . . . . . ----.. . . . . . . . . . . . . . . . . . . . . . . . . .

K=1

DO J=25,45,5
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DO I=1,5

XNPLUS(J+I,K) = -U(I+15) !UPDATES Y(T-2)

END DO

K=K+l

END DO

K=l

C -------------------------------------------------------------

DO J=0,20,5

DO I=1,5
XNPLUS(J+I,K)= -U(I+iO) UPDATES Y(T-1)

END DO
K=K+l

END DO
C --------------------------------------------------------------
Ci CALCULATION OF P(K) * XN(K+ 1)

C --------------------------------------------------------------
CALL MMULT (100,100,5,PN,XNPLUS,PNXNPLUS)

CI CALCULATE XNPLUST * PN

C --------------------------------------------------------------
Cl THE FOLLOWING LOOP UPDATES THE FORGETTING FACTOR MATRIX

C --------------------------------------------------------------
DO I=1,5

DO J=1,5

IF(I.EQ.J)THEN

FORGET(I,J)=U(31)

ELSE
FORGET(I,J)=O

END IF

END DO
END DO

DO I=1,5
DO J=1,100

XNPLUST(I,J) = XNPLUS(J,I)
END DO

END DO
CALL MMULT (5,100,100,XNPLUST,PN,XNPLUSPN)

C------------------------------------------------------------
CI CALCULATE X(N+1)T*PN*X(N+l)

C------------------------------------------------------------

CALL MMULT (5,100,5,XNPLUSPN,XNPLUS,GAMD1)

C ------------------------------------------------------------
CI CALCULATE GAMMA(N+1)
C ------------------------------------------------------------
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DO 1=1,5

DO J=1,5

GAMMA(I,J) = FORGET(I,J) + GAMD1(I,J)

END DO

END DO

C ------------------------------------------------------------
Cl COMPUTE GAMMA(N+1) INVERSE USING IMSL ROUTINE

C ------------------------------------------------------------
CALL DLINRG (N,GAMMA,LDA,GAMMAI,LDAINV)

CALL MMULT (1O0,5,5,PNXNPLUS,GAMMAI,PXPLGAM)

C ------------------------------------------------------------
CI CALCULATE PNPLUS, UPDATE OF COVARIANCE MATRIX

C------------------------------------------------------------
CALL MMULT (100,5,100,PXPLGAM,XNPLUSPN,PND2)

C J=1,100

DO J=1,100
DO K=., 10

PNPLUS(J,K)=PN(J,K)-PND2(J,K)

END DO

END DO

C -----------------------------------------------------------
CI UPDATE COVARIANCE MATRIX AND PREPARE FOR NEXT ITERATION I
cl----------------------------------------------------------

DO I=1,100

DO J=1,100
PN(I,J) = PNPLUS(I,J)

END DO

END DO

C--------------------------------------------------------------

CI

CI THIS CONCLUDES THE BASIC CALCULATION OF THE LEAST SQUARES
CI ESTIMATE OF THE PARAMETER VECTOR THETA. NEXT THE GAIN

CI MATRICES WILL BE CALCULATED

CI

C --------------------------------------------------------------
C--------------------------------------------------------------

Cl
CI CALCULATION OF THE IDENTITY MATRIX FOR 5 X 5

C--------------------------------------------------------------

DO 1=1,5

DO J=1,5

IF(I.EQ.J)THEN

EYES(I,J)=l

ELSE

EYE5(I,J)=O
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END IF
END DO

END DO
C ------ CALCULATION OF H AND H INVERSE -------------------------

K=O

DO I=1,5

DO J=1,5
AlARMA(I,J)=THETA(K + J)

A2ARMA(I,J)=THETA(25 +K + J)
B1ARMA(I ,J)=THETA(50+K+J)
B2ARMA(I ,J)=THETA(75+K+J)

CON(I,J) =BlARMA(I,J) + B2ARMA(I,J)

GODEN(I,J) =EYES(I,J) + AlARMA(I,J) + A2ARMA(I,J)
END DO

K=K + 5

END DO

CALL DLINRG (N,BlARMA,LDA,HINV,LDAINV)

CALL DLINRG (N,GODEN,LDA,GODENI ,LDAINV)

C --------------------------------------------------------------

CI INITIALIZE SIGMA MATRIX
C --------------------------------------------------------------

DO 1=1,S

SIGMA(I)=U(I+20)

END DO

C --------------------------------------------------------------
CI INITIALIZE PI MATRIX
C ------ I--------------------------------------------------------

DO I=1,5
PIT(I)=U(25+I)

END DO

C --------------------------------------------------------------

CI CALCULATION OF G(O) AND INV(GO)

C --------------------------------------------------------------
CALL MMULT (5,5,5,GODENI,GON,GO)

CALL DLINRG (N,GO1LDA,GOI,LDAINV)

C --------------------------------------------------------------
CI CALCULATION OF Ki AND K2 FOR GAIN

C--------------------------------------------------------------

DO I=1,5

DO J=1,5

K1(I,J)= HINV(I,J)*SIGMA(J)
K2(I,J)l= GJOI(I,J)*PIT(J)

END DO
END DO
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Cl THE FOLLOWING ROUTINES WILL PREPARE THE OUTPUTS OF THE USER I
CI BLOCK. Y(1) - Y(25)=Kl, Y(26)-Y(50)=K2,Y(51)-Y(150)=THETA I
CI --------------------------------------------------------------

L=25

K=O
DO I=1,5

DO J=1,5

Y(J+K)=Kl(I,J)

Y(J*L)=K2(I,J)

END DO
K=K+S

L=L+5
END DO
DO I=1,100

Y(I+50)=THETA(I)

END DO
999 RETURN

END
C ----------------------------------------------------------------
CI SUBROUTINE MMULT FOR THE MATRIX MULTIPY-SIZE > 1
C ----------------------------------------------------------------

SUBROUTINE MMULT (MATARW,MATACL,MATABCL,MATA,MATB,MATC)
DOUBLE PRECISION MATC(MATARW,MATABCL) ,MATA(MATARW,MATACL),

+ MATB (MATACL ,MATABCL)

INTEGER MATARW ,MATACL ,MATABCL
DO I=1,MATARW

DO K=1,MATASCL

SUM=0 !RESET PRODUCT SUM
DO J=1,MATACL

SUM=SUM + MATA(I,J)4'MATB(J,K)
END DO

MATC(I ,K)=STJM

END DO

END DO

RETURN

END

C ----------------------------------------------------------------
CI MATRIX MULTIPLY ROUTINE FOR MATRICES WITH A COLUMN
C ----------------------------------------------------------------

SUBROUTINE MMIJLTI (MATARW,MATACL,MATABCL,MATA,MATB,MATC)
DOUBLE PRECISION MATC(MATARW) ,MATA(MATARW,MATACL),

+ MATB(MATACL)

INTEGER MATARW ,MATACL, MATABCL

DO I=1,MATARW
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SUM=O !RESET PRODUCT SUM

DO J=1,MATACL
SUM = SUM + MATA(I,J)*MATB(J)

END DO
MATC(I) = SUM

END DO

RETURN

END
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law can make the CRCA successfully perform all five maneuvers for two of the three control surface
failures investigated in two of the three point designs. The step response PI control law results in
stable control for only one of three failure situations.-,'or high gains, the system transfer function
becomes asymptotically diagonal (the outputs are decoupled). Based on this property, the frequency
analysis is obtained for the discrete PI design using each'output with respect to its associated input.
Phase margins in excess of 45', gain margins of grcater than 6dB, and bandwidths in the range
of 5-10 rad/sec are the result. The adaptive controller displays a larger than expected ioll angle
output in two of the maneuvers as compared to the step response PI results. An adaptive algorithm
using a iftursive least squares estimation is run with failure introduction occurring at one of two
times in the simulation. The ada- ;ve results also display decoupling of the outputs in the steady
state.
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